def __call__(self): self.timeholder = TimeHolder(self.position, self._all_channel_regions, None, self.meta_data, self.settings, self._frames, self.plate_id, **self._hdf_options) ca = CellAnalyzer(timeholder=self.timeholder, position=self.position, create_images=True, binning_factor=1, detect_objects=self.settings.get( 'Processing', 'objectdetection')) n_images = self._analyze(ca)
def __call__(self): hdf5_fname = join(self._hdf5_dir, '%s.ch5' % self.position) self.timeholder = TimeHolder(self.position, self._all_channel_regions, hdf5_fname, self.meta_data, self.settings, self._frames, self.plate_id, **self._hdf_options) stopwatch = StopWatch(start=True) ca = CellAnalyzer(timeholder=self.timeholder, position=self.position, create_images=True, binning_factor=1, detect_objects=self.settings.get( 'Processing', 'objectdetection')) #self.setup_classifiers() #self.export_features = self.define_exp_features() self._analyze(ca) return ca
def __call__(self): self.timeholder = TimeHolder(self.position, self._all_channel_regions, self.datafile, self.meta_data, self.settings, self._frames, self.plate_id, well=None, site=None, **self._hdf_options) stopwatch = StopWatch(start=True) ca = CellAnalyzer(timeholder=self.timeholder, position=self.position, create_images=True, binning_factor=1, detect_objects=self.settings.get( 'Processing', 'objectdetection')) self._analyze(ca) return ca
def __call__(self): # include hdf5 file name in hdf5_options # perhaps timeholder might be a good place to read out the options # file does not have to exist to proceed hdf5_fname = join(self._hdf5_dir, '%s.ch5' % self.position) self.timeholder = TimeHolder(self.position, self._all_channel_regions, hdf5_fname, self.meta_data, self.settings, self._frames, self.plate_id, **self._hdf_options) self.settings.set_section('Tracking') self.setup_classifiers() # setup tracker if self.settings('Processing', 'tracking'): tropts = (self.settings('Tracking', 'tracking_maxobjectdistance'), self.settings('Tracking', 'tracking_maxsplitobjects'), self.settings('Tracking', 'tracking_maxtrackinggap')) self._tracker = Tracker(*tropts) stopwatch = StopWatch(start=True) ca = CellAnalyzer(timeholder=self.timeholder, position = self.position, create_images = True, binning_factor = 1, detect_objects = self.settings('Processing', 'objectdetection')) self.export_features = self.define_exp_features() n_images = self._analyze(ca) if n_images > 0: # invoke event selection if self.settings('Processing', 'eventselection') and \ self.settings('Processing', 'tracking'): evchannel = self.settings('EventSelection', 'eventchannel') region = self.classifiers[evchannel].regions if self.settings('EventSelection', 'unsupervised_event_selection'): graph = self._tracker.graph elif evchannel != PrimaryChannel.NAME or \ region != self.settings("Tracking", "region"): graph = self._tracker.clone_graph(self.timeholder, evchannel, region) else: graph = self._tracker.graph self._tes = self.setup_eventselection(graph) self.logger.debug("--- visitor start") self._tes.find_events() self.logger.debug("--- visitor ok") if self.is_aborted(): return 0 # number of processed images # save all the data of the position, no aborts from here on # want all processed data saved if self.settings('Output', 'export_object_counts') and \ self.settings('EventSelection', 'supervised_event_selection'): # no object counts in case of unsupervised event selection self.export_object_counts() if self.settings('Output', 'export_object_details'): self.export_object_details() if self.settings('Output', 'export_file_names'): self.export_image_names() if self.settings('Processing', 'tracking'): self.export_tracks_hdf5() self.update_status({'text': 'export events...'}) if self.settings('Output', 'hdf5_include_events'): self.export_events_hdf5() if self.settings('Output', "export_events"): if self.settings('Processing', 'eventselection'): self.export_events() if self.settings('EventSelection', 'unsupervised_event_selection'): self.export_tc3() if self.settings('Output', 'export_track_data'): self.export_full_tracks() if self.settings('Output', 'export_tracking_as_dot'): self.export_graphviz(channel_name =PrimaryChannel.NAME,\ region_name =self._all_channel_regions[PrimaryChannel.NAME][PrimaryChannel.NAME]) self.export_classlabels() self.update_status({'text': 'export events...', 'max': 1, 'progress': 1}) # remove all features from all channels to free memory # for the generation of gallery images self.timeholder.purge_features() if self.settings.get('Output', 'events_export_gallery_images') and \ self.settings.get('Processing', 'eventselection'): self.export_gallery_images() try: intval = stopwatch.stop()/n_images*1000 except ZeroDivisionError: pass else: self.logger.info(" - %d image sets analyzed, %3d ms per image set" % (n_images, intval)) self.touch_finished() self.clear() return n_images
def __call__(self): thread = QThread.currentThread() well, site = self._posinfo() self.timeholder = TimeHolder(self.position, self._all_channel_regions, self.datafile, self.meta_data, self.settings, self._frames, self.plate_id, well, site, **self._hdf_options) self.settings.set_section('Tracking') self.setup_classifiers() # setup tracker if self.settings('Processing', 'tracking'): tropts = (self.settings('Tracking', 'tracking_maxobjectdistance'), self.settings('Tracking', 'tracking_maxsplitobjects'), self.settings('Tracking', 'tracking_maxtrackinggap')) self._tracker = Tracker(*tropts) stopwatch = StopWatch(start=True) ca = CellAnalyzer(timeholder=self.timeholder, position=self.position, create_images=True, binning_factor=1, detect_objects=self.settings('Processing', 'objectdetection')) self.export_features = self.define_exp_features() self._analyze(ca) # invoke event selection if self.settings('Processing', 'eventselection') and \ self.settings('Processing', 'tracking'): evchannel = self.settings('EventSelection', 'eventchannel') region = self.classifiers[evchannel].regions if evchannel != PrimaryChannel.NAME or region != self.settings( "Tracking", "region"): graph = self._tracker.clone_graph(self.timeholder, evchannel, region) else: graph = self._tracker.graph self._tes = self.setup_eventselection(graph) self.logger.info("Event detection") self._tes.find_events() if self.isAborted(): return 0 # number of processed images # save all the data of the position, no aborts from here on # want all processed data saved if self.settings('Processing', 'tracking'): self.statusUpdate(text="Saving Tracking Data to cellh5...") self.save_tracks() if self.settings('Output', 'hdf5_include_events') and \ self.settings('Processing', "eventselection"): self.statusUpdate(text="Saving Event Data to cellh5...") self.save_events() self.save_classification() self.timeholder.purge() try: n = len(self._frames) intval = stopwatch.stop() / n * 1000 except ZeroDivisionError: pass else: self.logger.info("%d images analyzed, %3d ms per image set" % (n, intval)) self.clear() if isfile(self.datafile): with Ch5File(self.datafile, mode="r+") as ch5: ch5.savePlateLayout(self.layout, self.plate_id)