コード例 #1
0
ファイル: test_mtl.py プロジェクト: mindis/celer
def test_MultiTaskLassoCV():
    """Test that our MultitaskLassoCV behaves like sklearn's."""
    X, y = build_dataset(n_samples=30, n_features=50, n_targets=3)

    params = dict(eps=1e-2, n_alphas=10, tol=1e-10, cv=2, n_jobs=1,
                  fit_intercept=False, verbose=2)

    clf = MultiTaskLassoCV(**params)
    clf.fit(X, y)

    clf2 = sklearn_MultiTaskLassoCV(**params)
    clf2.max_iter = 10000  # increase max_iter bc of low tol
    clf2.fit(X, y)

    np.testing.assert_allclose(clf.mse_path_, clf2.mse_path_,
                               atol=1e-4, rtol=1e-04)
    np.testing.assert_allclose(clf.alpha_, clf2.alpha_,
                               atol=1e-4, rtol=1e-04)
    np.testing.assert_allclose(clf.coef_, clf2.coef_,
                               atol=1e-4, rtol=1e-04)

    # check_estimator tests float32 so using tol < 1e-7 causes precision
    # issues
    clf.tol = 1e-5
    check_estimator(clf)
コード例 #2
0
ファイル: test_mtl.py プロジェクト: Sandy4321/celer
def test_dropin_MultiTaskLassoCV():
    """Test that our LassoCV behaves like sklearn's LassoCV."""
    X, y, _, _ = build_dataset(n_samples=30, n_features=50, n_targets=3)
    params = dict(eps=1e-1,
                  n_alphas=100,
                  tol=1e-10,
                  cv=2,
                  n_jobs=2,
                  fit_intercept=False,
                  verbose=True)

    clf = MultiTaskLassoCV(**params)
    clf.fit(X, y)

    clf2 = sklearn_MultiTaskLassoCV(**params)
    clf2.fit(X, y)

    np.testing.assert_allclose(clf.mse_path_, clf2.mse_path_, rtol=1e-04)
    np.testing.assert_allclose(clf.alpha_, clf2.alpha_, rtol=1e-05)
    np.testing.assert_allclose(clf.coef_, clf2.coef_, rtol=1e-05)

    check_estimator(MultiTaskLassoCV)
コード例 #3
0
n_relevant_features = 20
support = rng.choice(n_features, n_relevant_features, replace=False)
coef = np.zeros((n_tasks, n_features))
times = np.linspace(0, 2 * np.pi, n_tasks)
for k in support:
    coef[:, k] = np.sin((1. + rng.randn(1)) * times + 3 * rng.randn(1))

X = rng.randn(n_samples, n_features)
Y = np.dot(X, coef.T) + rng.randn(n_samples, n_tasks)
Y /= norm(Y, ord='fro')

###############################################################################
# Fit with sklearn and celer, using the same API
params = dict(tol=1e-6, cv=4, n_jobs=-1)
t0 = time.perf_counter()
clf = MultiTaskLassoCV(**params).fit(X, Y)
t_celer = time.perf_counter() - t0

t0 = time.perf_counter()
clf_sklearn = linear_model.MultiTaskLassoCV(**params).fit(X, Y)
t_sklearn = time.perf_counter() - t0

###############################################################################
# Celer is faster
print("Time for celer  : %.2f s" % t_celer)
print("Time for sklearn: %.2f s" % t_sklearn)

###############################################################################
# Both packages find the same solution
print("Celer's optimal regularizer  : %s" % clf.alpha_)
print("Sklearn's optimal regularizer: %s" % clf_sklearn.alpha_)