コード例 #1
0
 def _convLSTM(self,
               input_hidden_state,
               scope_name='convLSTM',
               initial_state=None,
               trainable=True,
               scope_reuse=False):
     with tf.variable_scope(scope_name) as scope:
         if scope_reuse:
             scope.reuse_variables()
         # Create a placeholder for videos.
         print scope_name, input_hidden_state.get_shape()
         cell = ConvLSTMCell([self.IMAGE_HEIGHT / 8, self.IMAGE_WIDTH / 8],
                             self.lstm_channel, self.conLSTM_kernel)
         if initial_state == None:
             outputs, state = tf.nn.dynamic_rnn(
                 cell,
                 input_hidden_state,
                 initial_state=cell.zero_state(1, dtype=tf.float32),
                 dtype=input_hidden_state.dtype)
         else:
             outputs, state = tf.nn.dynamic_rnn(
                 cell,
                 input_hidden_state,
                 initial_state=initial_state,
                 dtype=input_hidden_state.dtype)
         print scope_name, outputs.get_shape()
         return outputs, state, cell.return_weight()
コード例 #2
0
 def conv_lstm_encoder(self, H, W, filter_size, kernel, encoder_input):
     with tf.variable_scope('enc_lstm_model',
                            reuse=self.reuse_conv_lstm_encoder):
         encoder_cell = ConvLSTMCell([H, W],
                                     filter_size,
                                     kernel,
                                     reuse=tf.get_variable_scope().reuse)
         zero_state = encoder_cell.zero_state(self.batch_size,
                                              dtype=tf.float32)
         _, encoded_state = tf.nn.dynamic_rnn(cell=encoder_cell,
                                              inputs=encoder_input,
                                              initial_state=zero_state)
         self.reuse_conv_lstm_encoder = True
         return encoded_state
コード例 #3
0
    def feedforward(self, ml, mh, regularizer=0):
        input_shape = mh.get_shape().as_list()
        batch_size = input_shape[0]

        #LSTM
        with tf.variable_scope('LSTM_1'):
            rh = tf.get_variable(
                "rh",
                [batch_size, self.output_h, self.output_w, self.output_depth],
                initializer=tf.constant_initializer(0.0),
                trainable=False)
            conv_w1 = tf.get_variable(
                "weight_lstm1",
                filter_shape,
                initializer=tf.truncated_normal_initializer(stddev=0.001))
            conv_b1 = tf.get_variable("bias1",
                                      1,
                                      initializer=tf.constant_initializer(0.0))
            cell_g1 = ConvLSTMCell([self.output_h, self.output_w],
                                   filters_lstm, kernal_lstm)
            init_state_g1 = cell_g1.zero_state(batch_size, dtype=tf.float32)
            state1 = init_state_g1
            for timestep in range(iteration):
                if timestep > 0:
                    tf.get_variable_scope().reuse_variables()
                rh_tr = tf.transpose(rh, perm=[0, 2, 1, 3])
                g1 = odl_op_layer_adjoint((odl_op_layer(rh_tr) - mh))
                gt1 = tf.transpose(g1, perm=[0, 2, 1, 3])
                (cell_output1, state1) = cell_g1(gt1, state1)
                conv1 = tf.nn.conv2d(cell_output1, conv_w1, [1, 1, 1, 1],
                                     "VALID")
                s1 = tf.nn.tanh(tf.nn.bias_add(conv1, conv_b1))
                self.variable_summaries(s1, ('s1_%d' % timestep))

                rh = rh + 0.0001 * s1 * gt1
                rh = tf.clip_by_value(rh, 0, 5)
                tf.summary.image('rh_pred_%d' % timestep, rh, 1)

        with tf.variable_scope('LSTM_2'):
            rl = tf.get_variable(
                "rl",
                [batch_size, self.output_h, self.output_w, self.output_depth],
                initializer=tf.constant_initializer(0.0),
                trainable=False)
            conv_w2 = tf.get_variable(
                "weight_lstm2",
                filter_shape,
                initializer=tf.truncated_normal_initializer(stddev=0.001))
            conv_b2 = tf.get_variable("bias2",
                                      1,
                                      initializer=tf.constant_initializer(0.0))
            cell_g2 = ConvLSTMCell([self.output_h, self.output_w],
                                   filters_lstm, kernal_lstm)
            init_state_g2 = cell_g2.zero_state(batch_size, dtype=tf.float32)
            state2 = init_state_g2
            for timestep in range(iteration):
                if timestep > 0:
                    tf.get_variable_scope().reuse_variables()
                rl_tr = tf.transpose(rl, perm=[0, 2, 1, 3])
                g2 = odl_op_layer_adjoint((odl_op_layer(rl_tr) - ml))
                gt2 = tf.transpose(g2, perm=[0, 2, 1, 3])

                (cell_output2, state2) = cell_g2(gt2, state2)
                conv2 = tf.nn.conv2d(cell_output2, conv_w2, [1, 1, 1, 1],
                                     "VALID")
                s2 = tf.nn.tanh(tf.nn.bias_add(conv2, conv_b2))
                self.variable_summaries(s2, ('s2_%d' % timestep))

                rl = rl + 0.0001 * s2 * gt2
                rl = tf.clip_by_value(rl, 0, 5)
                tf.summary.image('rl_pred_%d' % timestep, rl, 1)

        #CNN
        layer_L1 = layer_xyf.convo(rl, "conv_L1", FILTER_1, STRIDE_1, PAD_1)
        layer_L2 = layer_xyf.convo(layer_L1, "conv_L2", FILTER_2, STRIDE_2,
                                   PAD_2)
        layer_L3 = layer_xyf.convo(layer_L2, "conv_L3", FILTER_3, STRIDE_3,
                                   PAD_3)
        layer_L4 = layer_xyf.convo(layer_L3, "conv_L4", FILTER_4, STRIDE_4,
                                   PAD_4)
        layer_L5 = layer_xyf.convo(layer_L4, "conv_L5", FILTER_5, STRIDE_5,
                                   PAD_5)

        layer_H1 = layer_xyf.convo(rh, "conv_H1", FILTER_1, STRIDE_1, PAD_1)
        layer_H2 = layer_xyf.convo(layer_H1, "conv_H2", FILTER_2, STRIDE_2,
                                   PAD_2)
        layer_H3 = layer_xyf.convo(layer_H2, "conv_H3", FILTER_3, STRIDE_3,
                                   PAD_3)
        layer_H4 = layer_xyf.convo(layer_H3, "conv_H4", FILTER_4, STRIDE_4,
                                   PAD_4)
        layer_H5 = layer_xyf.convo(layer_H4, "conv_H5", FILTER_5, STRIDE_5,
                                   PAD_5)

        combine_LH = tf.concat([layer_L5, layer_H5], 3)

        pa_pred = layer_xyf.convo_noneRelu(combine_LH, "conv_pa", FILTER_6,
                                           STRIDE_6, PAD_6)
        pb_pred = layer_xyf.convo_noneRelu(combine_LH, "conv_pb", FILTER_6,
                                           STRIDE_6, PAD_6)
        pc_pred = layer_xyf.convo_noneRelu(combine_LH, "conv_pc", FILTER_6,
                                           STRIDE_6, PAD_6)
        pd_pred = layer_xyf.convo_noneRelu(combine_LH, "conv_pd", FILTER_6,
                                           STRIDE_6, PAD_6)

        d1 = pa_pred * rh + pb_pred * rl
        d2 = pc_pred * rh + pd_pred * rl

        d1 = tf.clip_by_value(d1, 0, 5)
        d2 = tf.clip_by_value(d2, 0, 5)

        tf.summary.image('d1_pred', d1, 1)
        tf.summary.image('d2_pred', d2, 1)

        return d1, d2, rl, rh