コード例 #1
0
    def test_solver_uncoupled(self):
        """Tests that solver_uncoupled function returns array of correct shape and value"""
        path = io.get_data_file_path('simulated_uncoupled_6x6.pkl')
        testdata = celldensity.CellDen(pd.read_pickle(path))
        test_params = [0.03, 0.005, 0.005]

        testdata_matrix = testdata.pd2np()
        testdata_solved = model.solver_uncoupled(test_params, testdata)
        assert np.shape(testdata_solved) == np.shape(testdata_matrix)
        np.testing.assert_almost_equal(testdata_solved[0, 1, 2, 3],
                                       testdata_matrix[0, 1, 2, 3], 3)
コード例 #2
0
    def test_log_likelihood_uncoupled(self):
        """Tests that log_likelihood_uncoupled function returns a reasonable estimate"""
        test_params = [0.03966004, 0.00523172, 0.00523965]

        path = io.get_data_file_path('simulated_uncoupled_6x6.pkl')
        testdata = celldensity.CellDen(pd.read_pickle(path))
        mu_n = -0.15
        sigma_n = 0.1

        val = model.log_likelihood_uncoupled(test_params, testdata, mu_n,
                                             sigma_n)
        np.testing.assert_almost_equal(val, -10410.36855, 4)
コード例 #3
0
    def test_log_likelihood_coupled(self):
        """Tests that log_likelihood_coupled function returns a reasonable estimate"""
        test_params = [0.03178564, 0.00310762, 0.00017541, 0.00022762]

        path = io.get_data_file_path('simulated_coupled_6x6.pkl')
        testdata = celldensity.CellDen(pd.read_pickle(path))
        mu_n = -0.15
        sigma_n = 0.1

        val = model.log_likelihood_coupled(test_params, testdata, mu_n,
                                           sigma_n)
        np.testing.assert_almost_equal(val, -10289.069087654105, 4)
コード例 #4
0
    def test_negative_log_posterior_uncoupled(self):
        """Tests that negative_log_posterior_uncoupled function returns correct value"""
        test_params = [0.03966004, 0.00523172, 0.00523965]

        path = io.get_data_file_path('simulated_uncoupled_6x6.pkl')
        testdata = celldensity.CellDen(pd.read_pickle(path))
        mu_n = -0.15
        sigma_n = 0.1

        ll = model.log_likelihood_uncoupled(test_params, testdata, mu_n,
                                            sigma_n)
        self.assertTrue((-1 * ll) == model.negative_log_posterior_uncoupled(
            test_params, testdata, mu_n, sigma_n))
コード例 #5
0
    def test_log_posterior_coupled(self):
        """Tests that log_posterior_coupled function returns a reasonable estimate"""
        test_params = [0.03178564, 0.00310762, 0.00017541, 0.00022762]

        path = io.get_data_file_path('simulated_coupled_6x6.pkl')
        testdata = celldensity.CellDen(pd.read_pickle(path))
        mu_n = -0.15
        sigma_n = 0.1

        lp = model.log_prior_coupled(test_params)
        ll = model.log_likelihood_coupled(test_params, testdata, mu_n, sigma_n)
        self.assertTrue((ll + lp) == model.log_posterior_coupled(
            test_params, testdata, mu_n, sigma_n))
コード例 #6
0
    def test_inference(self):
        """ Tests that inference on simulated data returns accurate params """

        #import data
        path = io.get_data_file_path('simulated_data.pkl')
        test_data = pd.read_pickle(path)
        data = celldensity.CellDen(test_data)
        #test data generated using k=[0.018, 0.001, 0.002]

        k0 = [0.02, 0.005, 0.001]
        res = op.fmin(model.negative_log_posterior_uncoupled,
                      k0,
                      args=(data, -0.15, 0.1))
        np.testing.assert_almost_equal(res, k0, 2)
コード例 #7
0
    def test_model_regress(self):
        """ Tests that model is running correctly"""

        # Parameters to calculate likelihood function
        params1 = [0.04, 0.005, 0.005]
        params2 = [0.1, 0.1, 0.1]

        path = io.get_data_file_path('simulated_uncoupled_6x6.pkl')
        testdata = celldensity.CellDen(pd.read_pickle(path))

        # Calculate log_likelihood function
        # sigma_n is set arbitrarily as 0.4
        val_1 = model.log_likelihood_uncoupled(params1, testdata, -0.15, 0.1)
        val_2 = model.log_likelihood_uncoupled(params2, testdata, -0.15, 0.1)

        self.assertTrue(val_2 < val_1)
コード例 #8
0
    def test_residual(self):
        """Tests that residual function returns a correct value"""
        params1 = [0.1, 0.1, 0.1]
        params2 = [0.1, 0.1, 0.1, 0.1]

        path = io.get_data_file_path('simulated_coupled_6x6.pkl')
        testdata = celldensity.CellDen(pd.read_pickle(path))
        mu_n = -0.15
        sigma_n = 0.1

        chi2_uncoupled = np.sum(
            model.residual(params1, testdata, mu_n, sigma_n, False)**2)
        chi2_coupled = np.sum(
            model.residual(params2, testdata, mu_n, sigma_n, True)**2)

        np.testing.assert_almost_equal(1604132.5558146131, chi2_uncoupled, 5)
        np.testing.assert_almost_equal(2277944.6229283987, chi2_coupled, 5)
コード例 #9
0
def cell_density(data_file, CellA, CellB, BinDiv, ImgWidth):
    '''
    Parameters:
    -----------
    data_file: the .csv file containing the data with the following columns
        Identity Labeling:
            Column 0:'ImageNumber': denoting the time step image
            Column 1: 'ObjectNumber': denoting the arbitrary identity of the cell
        Intensity classifications:
            'Classify_Intensity_UpperQuartileIntensity_Sox2_high_Intensity_UpperQuartileIntensity_Oct4_high'
            'Classify_Intensity_UpperQuartileIntensity_Sox2_high_Intensity_UpperQuartileIntensity_Oct4_low'
            'Classify_Intensity_UpperQuartileIntensity_Sox2_low_Intensity_UpperQuartileIntensity_Oct4_high'
            'Classify_Intensity_UpperQuartileIntensity_Sox2_low_Intensity_UpperQuartileIntensity_Oct4_low'
        Locations:
            'Location_Center_X'
            'Location_Center_Y'

    CellA: Name of the first cell type, e.g.'Sox2'
    CellB: Name of the second cell type, e.g. 'Oct4'
    BinDiv: An integer telling the function to divide the orginal cell image into BinDiv x BinDiv bins
    ImgWidth: the linear size of the image in pixels (e.g. for an image of 1024x1024, just enter 1024)

    return:
    -----------
        A dataframe of cell density, whose
            1) Main Columns are CellA, CellB and Both-Cell
            2) Sub Columns are different bins
            3) Rows are different time step t
    '''
    data_path = io.get_data_file_path(data_file)
    data_loc, both_high, both_low, high_CellA, high_CellB = io.load_data(
        data_path, CellA, CellB)

    def bin_cell_den_at_one_t(t):
        Both_X=data_loc.loc[((data_loc['ImageNumber']==t)&((data_loc[both_high]==1)|(data_loc[both_low]==1))),\
                            'Location_Center_X'].values
        Both_Y=data_loc.loc[((data_loc['ImageNumber']==t)&((data_loc[both_high]==1)|(data_loc[both_low]==1))),\
                            'Location_Center_Y'].values
        CellA_X = data_loc.loc[((data_loc['ImageNumber'] == t) &
                                (data_loc[high_CellA] == 1)),
                               'Location_Center_X'].values
        CellA_Y = data_loc.loc[((data_loc['ImageNumber'] == t) &
                                (data_loc[high_CellA] == 1)),
                               'Location_Center_Y'].values
        CellB_X = data_loc.loc[((data_loc['ImageNumber'] == t) &
                                (data_loc[high_CellB] == 1)),
                               'Location_Center_X'].values
        CellB_Y = data_loc.loc[((data_loc['ImageNumber'] == t) &
                                (data_loc[high_CellB] == 1)),
                               'Location_Center_Y'].values

        BinWidth = np.floor_divide(ImgWidth, BinDiv)

        def one_bin_den(i, j):  #bins are aranged in ith row and jth col
            # bin_index=i*BinDiv+j

            i = (BinDiv - 1) - i
            BinY_Low = BinWidth * i
            BinY_High = BinWidth * (i + 1)
            BinX_Low = BinWidth * j
            BinX_High = BinWidth * (j + 1)

            BinArea = 1  #treat as unit area, otherwise can use ((length_scale/ImgWidth)*BinWidth)**2
            Both_Bin_Den = len(Both_X[(Both_X >= BinX_Low) *
                                      (Both_X < BinX_High) *
                                      (Both_Y >= BinY_Low) *
                                      (Both_Y < BinY_High)]) / BinArea
            CellA_Bin_Den = len(CellA_X[(CellA_X >= BinX_Low) *
                                        (CellA_X < BinX_High) *
                                        (CellA_Y >= BinY_Low) *
                                        (CellA_Y < BinY_High)]) / BinArea
            CellB_Bin_Den = len(CellB_X[(CellB_X >= BinX_Low) *
                                        (CellB_X < BinX_High) *
                                        (CellB_Y >= BinY_Low) *
                                        (CellB_Y < BinY_High)]) / BinArea
            return [CellA_Bin_Den, CellB_Bin_Den, Both_Bin_Den]

        all_bin_den = np.vectorize(one_bin_den, otypes=[np.ndarray])

        bin_j, bin_i = np.meshgrid(np.arange(BinDiv), np.arange(BinDiv))
        cell_den_at_t = np.array(list(all_bin_den(bin_i, bin_j).flatten()))

        CellA_den_at_t = (cell_den_at_t[:, 0]).flatten()
        CellB_den_at_t = (cell_den_at_t[:, 1]).flatten()
        Both_den_at_t = (cell_den_at_t[:, 2]).flatten()

        return [CellA_den_at_t, CellB_den_at_t, Both_den_at_t]

    bin_cell_den_at_all_t = np.vectorize(bin_cell_den_at_one_t,
                                         otypes=[np.ndarray])

    max_t = data_loc['ImageNumber'].max()
    cell_den_diff_t = bin_cell_den_at_all_t(np.arange(max_t) + 1)

    CellA_den = np.zeros((max_t, BinDiv**2))
    CellB_den = np.zeros((max_t, BinDiv**2))
    Both_den = np.zeros((max_t, BinDiv**2))
    for t in range(max_t):
        CellA_den[t, :] = cell_den_diff_t[t][0]
        CellB_den[t, :] = cell_den_diff_t[t][1]
        Both_den[t, :] = cell_den_diff_t[t][2]

    cols = pd.MultiIndex.from_tuples([(x, y) for x in [CellA, CellB, 'Both']
                                      for y in np.arange(BinDiv * BinDiv)])
    return pd.DataFrame(np.hstack((np.hstack(
        (CellA_den, CellB_den)), Both_den)),
                        columns=cols)
コード例 #10
0
def draw_cell_loc(data_file,
                  CellA,
                  CellB,
                  time,
                  BinDiv=1,
                  bin_i=0,
                  bin_j=0,
                  ImgWidth=1024,
                  colorBoth=[255 / 255, 174 / 255, 66 / 255],
                  colorA='g',
                  colorB='r'):
    '''
    data_file: the .csv file containing the data with the following columns
        Identity Labeling:
            Column 0:'ImageNumber': denoting the time step image
            Column 1: 'ObjectNumber': denoting the arbitrary identity of the cell
        Intensity classifications:
            'Classify_Intensity_UpperQuartileIntensity_Sox2_high_Intensity_UpperQuartileIntensity_Oct4_high'
            'Classify_Intensity_UpperQuartileIntensity_Sox2_high_Intensity_UpperQuartileIntensity_Oct4_low'
            'Classify_Intensity_UpperQuartileIntensity_Sox2_low_Intensity_UpperQuartileIntensity_Oct4_high'
            'Classify_Intensity_UpperQuartileIntensity_Sox2_low_Intensity_UpperQuartileIntensity_Oct4_low'
        Locations:
            'Location_Center_X'
            'Location_Center_Y'

    CellA: Name of the first cell type, e.g.'Sox2'
    CellB: Name of the second cell type, e.g. 'Oct4'

    time: from 0 to (max time step-1)

    BinDiv: An integer telling the function to divide the orginal cell image into BinDiv x BinDiv bins
    bin_i, bin_j: from 0 to (maxmimum bin num-1), extracting the bin_i th row and the bin_j th column

    ImgWidth: the width dimension of the image in pixels (e.g. for an image of 1024x1024, just enter 1024

    '''
    t = time + 1

    data_path = io.get_data_file_path(data_file)
    data_loc, both_high, both_low, high_CellA, high_CellB = io.load_data(
        data_path, CellA, CellB)

    #read the concerned time t
    Both_X=data_loc.loc[((data_loc['ImageNumber']==t)&((data_loc[both_high]==1)|(data_loc[both_low]==1))),\
                            'Location_Center_X'].values
    Both_Y=data_loc.loc[((data_loc['ImageNumber']==t)&((data_loc[both_high]==1)|(data_loc[both_low]==1))),\
                            'Location_Center_Y'].values

    CellA_X = data_loc.loc[((data_loc['ImageNumber'] == t) &
                            (data_loc[high_CellA] == 1)),
                           'Location_Center_X'].values
    CellA_Y = data_loc.loc[((data_loc['ImageNumber'] == t) &
                            (data_loc[high_CellA] == 1)),
                           'Location_Center_Y'].values
    CellB_X = data_loc.loc[((data_loc['ImageNumber'] == t) &
                            (data_loc[high_CellB] == 1)),
                           'Location_Center_X'].values
    CellB_Y = data_loc.loc[((data_loc['ImageNumber'] == t) &
                            (data_loc[high_CellB] == 1)),
                           'Location_Center_Y'].values

    #Find the coor in the specified bin
    BinWidth = np.floor_divide(ImgWidth, BinDiv)

    i = (BinDiv - 1) - bin_i
    j = bin_j

    BinY_Low = BinWidth * i
    BinY_High = BinWidth * (i + 1)
    BinX_Low = BinWidth * j
    BinX_High = BinWidth * (j + 1)

    concerned_Both_X = Both_X[(Both_X >= BinX_Low) * (Both_X < BinX_High) *
                              (Both_Y >= BinY_Low) * (Both_Y < BinY_High)]
    concerned_Both_Y = Both_Y[(Both_X >= BinX_Low) * (Both_X < BinX_High) *
                              (Both_Y >= BinY_Low) * (Both_Y < BinY_High)]
    concerned_CellA_X = CellA_X[(CellA_X >= BinX_Low) * (CellA_X < BinX_High) *
                                (CellA_Y >= BinY_Low) * (CellA_Y < BinY_High)]
    concerned_CellA_Y = CellA_Y[(CellA_X >= BinX_Low) * (CellA_X < BinX_High) *
                                (CellA_Y >= BinY_Low) * (CellA_Y < BinY_High)]
    concerned_CellB_X = CellB_X[(CellB_X >= BinX_Low) * (CellB_X < BinX_High) *
                                (CellB_Y >= BinY_Low) * (CellB_Y < BinY_High)]
    concerned_CellB_Y = CellB_Y[(CellB_X >= BinX_Low) * (CellB_X < BinX_High) *
                                (CellB_Y >= BinY_Low) * (CellB_Y < BinY_High)]

    #plot out the cell distribution
    plt.figure(figsize=(12, 3))

    if BinDiv == 1:
        title_end = ' at time ' + str(time)
    else:
        title_end = ' in Bin ' + str(bin_i * BinDiv +
                                     bin_j) + ' at time ' + str(time)

    plt.subplot(1, 3, 1, aspect='equal')
    plt.scatter(concerned_CellA_X, concerned_CellA_Y, color=colorA, s=1.5)
    if BinDiv == 1:
        plt.xlim(0, ImgWidth)
        plt.ylim(ImgWidth, 0)
    else:
        plt.xlim(BinX_Low, BinX_High)
        plt.ylim(BinY_High, BinY_Low + 1)
    plt.title('Distribution of ' + CellA + title_end)

    plt.subplot(1, 3, 2, aspect='equal')
    plt.scatter(concerned_CellB_X, concerned_CellB_Y, color=colorB, s=1.5)
    if BinDiv == 1:
        plt.xlim(0, ImgWidth)
        plt.ylim(ImgWidth, 0)
    else:
        plt.xlim(BinX_Low, BinX_High)
        plt.ylim(BinY_High, BinY_Low + 1)
    plt.title('Distribution of ' + CellB + title_end)

    plt.subplot(1, 3, 3, aspect='equal')
    plt.scatter(concerned_Both_X, concerned_Both_Y, color=colorBoth, s=1.5)
    if BinDiv == 1:
        plt.xlim(0, ImgWidth)
        plt.ylim(ImgWidth, 0)
    else:
        plt.xlim(BinX_Low, BinX_High)
        plt.ylim(BinY_High, BinY_Low + 1)
    plt.title('Distribution of ' + 'Both-Cell' + title_end)

    plt.tight_layout()
    return