def main(): suppress_tf_logging(tf_suppress_log_messages) from brainreg.main import main as register from cellfinder.tools import prep start_time = datetime.now() args, arg_groups, what_to_run, atlas = prep.prep_cellfinder_general() if what_to_run.register: # TODO: add register_part_brain option logging.info("Registering to atlas") args, additional_images_downsample = prep.prep_registration(args) register( args.atlas, args.orientation, args.target_brain_path, args.brainreg_paths, args.voxel_sizes, arg_groups["NiftyReg registration backend options"], sort_input_file=args.sort_input_file, n_free_cpus=args.n_free_cpus, additional_images_downsample=additional_images_downsample, backend=args.backend, debug=args.debug, ) else: logging.info("Skipping registration") if len(args.signal_planes_paths) > 1: base_directory = args.output_dir for idx, signal_paths in enumerate(args.signal_planes_paths): channel = args.signal_ch_ids[idx] logging.info("Processing channel: " + str(channel)) channel_directory = os.path.join( base_directory, "channel_" + str(channel) ) if not os.path.exists(channel_directory): os.makedirs(channel_directory) # prep signal channel specific args args.signal_planes_paths[0] = signal_paths # TODO: don't overwrite args.output_dir - use Paths instead args.output_dir = channel_directory args.signal_channel = channel # Run for each channel run_all(args, what_to_run, atlas) else: args.signal_channel = args.signal_ch_ids[0] run_all(args, what_to_run, atlas) logging.info( "Finished. Total time taken: {}".format(datetime.now() - start_time) )
def main(): suppress_tf_logging(tf_suppress_log_messages) import amap.main as register from cellfinder.tools import prep start_time = datetime.now() args, what_to_run = prep.prep_cellfinder_general() if what_to_run.register: # TODO: add register_part_brain option logging.info("Registering to atlas") args, additional_images_downsample = prep.prep_registration(args) register.main( args.registration_config, args.target_brain_path, args.paths.registration_output_folder, x_pixel_um=args.x_pixel_um, y_pixel_um=args.y_pixel_um, z_pixel_um=args.z_pixel_um, orientation=args.orientation, flip_x=args.flip_x, flip_y=args.flip_y, flip_z=args.flip_z, affine_n_steps=args.affine_n_steps, affine_use_n_steps=args.affine_use_n_steps, freeform_n_steps=args.freeform_n_steps, freeform_use_n_steps=args.freeform_use_n_steps, bending_energy_weight=args.bending_energy_weight, grid_spacing_x=args.grid_spacing_x, smoothing_sigma_reference=args.smoothing_sigma_reference, smoothing_sigma_floating=args.smoothing_sigma_floating, histogram_n_bins_floating=args.histogram_n_bins_floating, histogram_n_bins_reference=args.histogram_n_bins_reference, sort_input_file=args.sort_input_file, n_free_cpus=args.n_free_cpus, save_downsampled=not (args.no_save_downsampled), additional_images_downsample=additional_images_downsample, boundaries=not (args.no_boundaries), debug=args.debug, ) else: logging.info("Skipping registration") if what_to_run.summarise: args = prep.prep_atlas_conf(args) if len(args.signal_planes_paths) > 1: base_directory = args.output_dir for idx, signal_paths in enumerate(args.signal_planes_paths): channel = args.signal_ch_ids[idx] logging.info("Processing channel: " + str(channel)) channel_directory = os.path.join( base_directory, "channel_" + str(channel) ) if not os.path.exists(channel_directory): os.makedirs(channel_directory) # prep signal channel specific args args.signal_planes_paths[0] = signal_paths # TODO: don't overwrite args.output_dir - use Paths instead args.output_dir = channel_directory args.signal_channel = channel # Run for each channel run_all(args, what_to_run) else: args.signal_channel = args.signal_ch_ids[0] run_all(args, what_to_run) logging.info( "Finished. Total time taken: {}".format(datetime.now() - start_time) )