def make_workspace_ijv(self): module = C.ConvertToImage() shape = (14, 16) r = np.random.RandomState() r.seed(0) i = r.randint(0, shape[0], size=np.prod(shape)) j = r.randint(0, shape[1], size=np.prod(shape)) v = r.randint(1, 8, size=np.prod(shape)) order = np.lexsort((i, j, v)) ijv = np.column_stack((i, j, v)) ijv = ijv[order, :] same = np.all(ijv[:-1, :] == ijv[1:, :], 1) ijv = ijv[~same, :] pipeline = cpp.Pipeline() object_set = cpo.ObjectSet() image_set_list = cpi.ImageSetList() image_set = image_set_list.get_image_set(0) workspace = cpw.Workspace(pipeline, module, image_set, object_set, cpmeas.Measurements(), image_set_list) objects = cpo.Objects() objects.set_ijv(ijv, shape) object_set.add_objects(objects, OBJECTS_NAME) self.assertGreater(len(objects.get_labels()), 1) module.image_name.value = IMAGE_NAME module.object_name.value = OBJECTS_NAME return (workspace, module, ijv)
def make_workspace(self): module = C.ConvertToImage() labels = np.reshape(np.arange(256), (16, 16)) pipeline = cpp.Pipeline() object_set = cpo.ObjectSet() image_set_list = cpi.ImageSetList() image_set = image_set_list.get_image_set(0) workspace = cpw.Workspace(pipeline, module, image_set, object_set, cpmeas.Measurements(), image_set_list) objects = cpo.Objects() objects.segmented = labels object_set.add_objects(objects, OBJECTS_NAME) module.image_name.value = IMAGE_NAME module.object_name.value = OBJECTS_NAME return (workspace, module)