def prepare_run(self, message, session_id, grouping_allowed=False): """Prepare a pipeline and measurements to run message - the run-request or run-groups-request message session_id - the session ID for the session grouping_allowed - true to allow grouped images """ pipeline = cellprofiler_core.pipeline.Pipeline() m = Measurements() object_set = cellprofiler_core.object.ObjectSet() if len(message) < 2: self.raise_cellprofiler_exception(session_id, "Missing run request sections") return pipeline_txt = message.pop(0).bytes image_metadata = message.pop(0).bytes try: image_metadata = json.loads(image_metadata) for channel_name, channel_metadata in image_metadata: if len(message) < 1: self.raise_cellprofiler_exception( session_id, "Missing binary data for channel %s" % channel_name) return None, None, None pixel_data = self.decode_image( channel_metadata, message.pop(0).bytes, grouping_allowed=grouping_allowed, ) m.add(channel_name, cellprofiler_core.image.Image(pixel_data)) except Exception as e: logging.warning("Failed to decode message") self.raise_cellprofiler_exception(session_id, e) return None, None, None try: pipeline.loadtxt(StringIO(pipeline_txt)) except Exception as e: logging.warning( "Failed to load pipeline: sending pipeline exception") self.raise_pipeline_exception(session_id, str(e)) return None, None, None return pipeline, m, object_set
def run_group_request(self, session_id, message_type, message): """Handle a run-group request message""" pipeline = cellprofiler_core.pipeline.Pipeline() m = Measurements() image_group = m.hdf5_dict.hdf5_file.create_group("ImageData") if len(message) < 2: self.raise_cellprofiler_exception(session_id, "Missing run request sections") return pipeline_txt = message.pop(0).bytes image_metadata = message.pop(0).bytes n_image_sets = None try: image_metadata = json.loads(image_metadata) channel_names = [] for channel_name, channel_metadata in image_metadata: channel_names.append(channel_name) if len(message) < 1: self.raise_cellprofiler_exception( session_id, "Missing binary data for channel %s" % channel_name) return None, None, None pixel_data = self.decode_image(channel_metadata, message.pop(0).bytes, grouping_allowed=True) if pixel_data.ndim < 3: self.raise_cellprofiler_exception( session_id, "The image for channel %s does not have a Z or T dimension", ) return if n_image_sets is None: n_image_sets = pixel_data.shape[0] elif n_image_sets != pixel_data.shape[0]: self.raise_cellprofiler_exception( session_id, "The images passed have different numbers of Z or T planes", ) return image_group.create_dataset(channel_name, data=pixel_data) except Exception as e: self.raise_cellprofiler_exception(session_id, e) return None, None, None try: pipeline.loadtxt(StringIO(pipeline_txt)) except Exception as e: logging.warning( "Failed to load pipeline: sending pipeline exception") self.raise_pipeline_exception(session_id, str(e)) return image_numbers = numpy.arange(1, n_image_sets + 1) for image_number in image_numbers: m["Image", GROUP_NUMBER, image_number, ] = 1 m["Image", GROUP_INDEX, image_number, ] = image_number input_modules, other_modules = self.split_pipeline(pipeline) workspace = cellprofiler_core.workspace.Workspace( pipeline, None, m, None, m, None) logging.info("Preparing group") for module in other_modules: module.prepare_group( workspace, dict([("image_number", i) for i in image_numbers]), image_numbers, ) for image_index in range(n_image_sets): object_set = cellprofiler_core.object.ObjectSet() m.next_image_set(image_index + 1) for channel_name in channel_names: dataset = image_group[channel_name] pixel_data = dataset[image_index] m.add(channel_name, Image(pixel_data)) for module in other_modules: workspace = cellprofiler_core.workspace.Workspace( pipeline, module, m, object_set, m, None) try: logging.info("Running module # %d: %s" % (module.module_num, module.module_name)) pipeline.run_module(module, workspace) if workspace.disposition in ( DISPOSITION_SKIP, DISPOSITION_CANCEL, ): break except Exception as e: msg = 'Encountered error while running module, "%s": %s' % ( module.module_name, e, ) logging.warning(msg) self.raise_cellprofiler_exception(session_id, msg) return else: continue if workspace.disposition == DISPOSITION_CANCEL: break for module in other_modules: module.post_group( workspace, dict([("image_number", i) for i in image_numbers])) logging.info("Finished group") type_names, feature_dict = self.find_measurements( other_modules, pipeline) double_features = [] double_data = [] float_features = [] float_data = [] int_features = [] int_data = [] string_features = [] string_data = [] metadata = [ double_features, float_features, int_features, string_features ] for object_name, features in list(feature_dict.items()): df = [] double_features.append((object_name, df)) ff = [] float_features.append((object_name, ff)) intf = [] int_features.append((object_name, intf)) sf = [] string_features.append((object_name, sf)) if object_name == "Image": object_counts = [] * n_image_sets else: object_numbers = m[object_name, OBJECT_NUMBER, image_numbers, ] object_counts = [len(x) for x in object_numbers] for feature, data_type in features: if data_type == "java.lang.String": continue if not m.has_feature(object_name, feature): data = numpy.zeros(numpy.sum(object_counts)) else: data = m[object_name, feature, image_numbers] temp = [] for i, (di, count) in enumerate(zip(data, object_counts)): if count == 0: continue di = numpy.atleast_1d(di) if len(di) > count: di = di[:count] elif len(di) == count: temp.append(di) else: temp += [di + numpy.zeros(len(di) - count)] if len(temp) > 0: data = numpy.hstack(temp) if type_names[data_type] == "java.lang.Double": df.append((feature, len(data))) if len(data) > 0: double_data.append(data.astype("<f8")) elif type_names[data_type] == "java.lang.Float": ff.append((feature, len(data))) if len(data) > 0: float_data.append(data.astype("<f4")) elif type_names[data_type] == "java.lang.Integer": intf.append((feature, len(data))) if len(data) > 0: int_data.append(data.astype("<i4")) data = numpy.hstack([ numpy.frombuffer( numpy.ascontiguousarray(numpy.hstack(ditem)).data, numpy.uint8) for ditem in (double_data, float_data, int_data) if len(ditem) > 0 ]) data = numpy.ascontiguousarray(data) self.socket.send_multipart([ zmq.Frame(session_id), zmq.Frame(), zmq.Frame(RUN_REPLY_1), zmq.Frame(json.dumps(metadata)), zmq.Frame(data), ])