def test_train_test_split_ratios(): n_class1 = 4 n_class2 = 8 transform_type = "Train/Test Split" time_series = [TimeSeries(*sample_values(), target='class1') for i in range(n_class1)] time_series += [TimeSeries(*sample_values(), target='class2') for i in range(n_class2)] outputs = transformation.train_test_split( time_series, test_size=0.5, train_size=0.5) npt.assert_equal(len(outputs[1]), len(time_series) / 2) npt.assert_equal(len(outputs[0]), len(time_series) / 2)
def test_train_test_split_basecase(): npt.assert_equal(transformation.train_test_split([]), ([], []))