コード例 #1
0
 def setUp(self):
     self.filename = os.path.join(
         os.path.dirname(os.path.abspath(__file__)), 'test_file.nc')
     aux1 = cf.AuxiliaryCoordinate()
     aux1.standard_name = 'latitude'
     a = numpy.array(
         [-30, -23.5, -17.8123, -11.3345, -0.7, -0.2, 0, 0.2, 0.7,
          11.30003, 17.8678678, 23.5, 30]
     )
     aux1.set_data(cf.Data(a, 'degrees_north'))
     bounds = cf.Bounds()
     b = numpy.empty(a.shape + (2,))
     b[:, 0] = a - 0.1
     b[:, 1] = a + 0.1
     bounds.set_data(cf.Data(b))
     aux1.set_bounds(bounds)
     self.aux1 = aux1
コード例 #2
0
    def test_AuxiliaryCoordinate_transpose(self):
        x = self.f.auxiliary_coordinate("longitude").copy()

        bounds = cf.Bounds(
            data=cf.Data(numpy.arange(9 * 10 * 4).reshape(9, 10, 4)))
        x.set_bounds(bounds)

        self.assertEqual(x.shape, (9, 10))
        self.assertEqual(x.bounds.shape, (9, 10, 4))

        y = x.transpose()
        self.assertEqual(y.shape, (10, 9))
        self.assertEqual(y.bounds.shape, (10, 9, 4), y.bounds.shape)

        x.transpose([1, 0], inplace=True)
        self.assertEqual(x.shape, (10, 9))
        self.assertEqual(x.bounds.shape, (10, 9, 4), x.bounds.shape)
コード例 #3
0
    def test_AuxiliaryCoordinate_transpose(self):
        f = cf.read(self.filename)[0]
        x = f.auxiliary_coordinates('longitude').value()

        bounds = cf.Bounds(
            data=cf.Data(numpy.arange(9 * 10 * 4).reshape(9, 10, 4)))
        x.set_bounds(bounds)

        self.assertEqual(x.shape, (9, 10))
        self.assertEqual(x.bounds.shape, (9, 10, 4))

        y = x.transpose()
        self.assertEqual(y.shape, (10, 9))
        self.assertEqual(y.bounds.shape, (10, 9, 4), y.bounds.shape)

        x.transpose([1, 0], inplace=True)
        self.assertEqual(x.shape, (10, 9))
        self.assertEqual(x.bounds.shape, (10, 9, 4), x.bounds.shape)
コード例 #4
0
    def test_AuxiliaryCoordinate_squeeze(self):
        x = self.f.auxiliary_coordinate("longitude").copy()

        bounds = cf.Bounds(
            data=cf.Data(numpy.arange(9 * 10 * 4).reshape(9, 10, 4)))
        x.set_bounds(bounds)
        x.insert_dimension(1, inplace=True)
        x.insert_dimension(0, inplace=True)

        self.assertEqual(x.shape, (1, 9, 1, 10))
        self.assertEqual(x.bounds.shape, (1, 9, 1, 10, 4))

        y = x.squeeze()
        self.assertEqual(y.shape, (9, 10))
        self.assertEqual(y.bounds.shape, (9, 10, 4), y.bounds.shape)

        x.squeeze(2, inplace=True)
        self.assertEqual(x.shape, (1, 9, 10))
        self.assertEqual(x.bounds.shape, (1, 9, 10, 4), x.bounds.shape)
コード例 #5
0
    def test_AuxiliaryCoordinate_squeeze(self):
        f = cf.read(self.filename)[0]
        x = f.auxiliary_coordinates('longitude').value()

        bounds = cf.Bounds(
            data=cf.Data(numpy.arange(9 * 10 * 4).reshape(9, 10, 4)))
        x.set_bounds(bounds)
        x.insert_dimension(1, inplace=True)
        x.insert_dimension(0, inplace=True)

        self.assertEqual(x.shape, (1, 9, 1, 10))
        self.assertEqual(x.bounds.shape, (1, 9, 1, 10, 4))

        y = x.squeeze()
        self.assertEqual(y.shape, (9, 10))
        self.assertEqual(y.bounds.shape, (9, 10, 4), y.bounds.shape)

        x.squeeze(2, inplace=True)
        self.assertEqual(x.shape, (1, 9, 10))
        self.assertEqual(x.bounds.shape, (1, 9, 10, 4), x.bounds.shape)
コード例 #6
0
cell_method2.set_axes(axisT)
cell_method2.set_method('maximum')

# Insert the cell method constructs into the field in the same
# order that their methods were applied to the data
Q.set_construct(cell_method1)
Q.set_construct(cell_method2)

# Create a "time" dimension coordinate construct, with coordinate
# bounds
dimT = cf.DimensionCoordinate(properties={
    'standard_name': 'time',
    'units': 'days since 2018-12-01'
},
                              data=cf.Data([15.5]),
                              bounds=cf.Bounds(data=cf.Data([[0, 31.]])))

# Create a "longitude" dimension coordinate construct, without
# coordinate bounds
dimX = cf.DimensionCoordinate(data=cf.Data(numpy.arange(8.)))
dimX.set_properties({'standard_name': 'longitude', 'units': 'degrees_east'})

# Create a "longitude" dimension coordinate construct
dimY = cf.DimensionCoordinate(properties={
    'standard_name': 'latitude',
    'units': 'degrees_north'
})
array = numpy.arange(5.)
dimY.set_data(cf.Data(array))

# Create and insert the latitude coordinate bounds
コード例 #7
0
def _formula_terms(standard_name):
    """Return a field construct with a vertical CRS, its computed non-
    parametric coordinates, and the computed standard name."""
    # field: air_temperature
    field = cf.Field()
    field.set_properties({"standard_name": "air_temperature", "units": "K"})
    data = cf.Data([0, 1, 2], units="K", dtype="f8")

    # domain_axis: Z
    c = cf.DomainAxis()
    c.set_size(3)
    c.nc_set_dimension("z")
    axisZ = field.set_construct(c, key="domainaxis1", copy=False)

    field.set_data(data)

    # coordinate_reference:
    coordref = cf.CoordinateReference()
    coordref.coordinate_conversion.set_parameter(
        "standard_name", standard_name
    )

    aux = cf.AuxiliaryCoordinate()
    aux.long_name = "Computed from parametric {} vertical coordinates".format(
        standard_name
    )

    if standard_name == "atmosphere_ln_pressure_coordinate":
        computed_standard_name = "air_pressure"

        # Computed vertical corodinates
        aux.standard_name = computed_standard_name
        data = cf.Data([700, 500, 300], "hPa", dtype="f8")
        aux.set_data(data)
        bounds = cf.Bounds()
        data = cf.Data([[800, 600], [600, 400], [400, 200]], "hPa", dtype="f8")
        bounds.set_data(data)
        aux.set_bounds(bounds)

        # domain_ancillary: p0
        p0 = cf.DomainAncillary()
        p0.standard_name = (
            "reference_air_pressure_for_atmosphere_vertical_coordinate"
        )
        data = cf.Data(1000.0, units="hPa", dtype="f8")
        p0.set_data(data)
        p0_key = field.set_construct(p0, axes=(), copy=False)

        # domain_ancillary: Z
        lev = cf.DomainAncillary()
        lev.standard_name = standard_name
        data = -(aux.data / p0.data).log()
        lev.set_data(data)
        bounds = cf.Bounds()
        data = -(aux.bounds.data / p0.data).log()
        bounds.set_data(data)
        lev.set_bounds(bounds)
        lev_key = field.set_construct(lev, axes=axisZ, copy=False)

        # dimension_coordinate: Z
        levc = cf.DimensionCoordinate(source=lev)
        levc_key = field.set_construct(levc, axes=axisZ, copy=False)

        # coordinate_reference:
        coordref.set_coordinates({levc_key})
        coordref.coordinate_conversion.set_domain_ancillaries(
            {"p0": p0_key, "lev": lev_key}
        )
        field.set_construct(coordref)

    elif standard_name == "atmosphere_sigma_coordinate":
        computed_standard_name = "air_pressure"

        # Computed vertical corodinates
        aux.standard_name = computed_standard_name
        data = cf.Data([700, 500, 300], "hPa", dtype="f8")
        aux.set_data(data)
        b = cf.Bounds()
        data = cf.Data([[800, 600], [600, 400], [400, 200]], "hPa", dtype="f8")
        b.set_data(data)
        aux.set_bounds(b)

        # domain_ancillary: ps
        ps = cf.DomainAncillary()
        ps.standard_name = "surface_air_pressure"
        data = cf.Data(1000, units="hPa", dtype="f8")
        ps.set_data(data)
        ps_key = field.set_construct(ps, axes=(), copy=False)

        # domain_ancillary: ptop
        ptop = cf.DomainAncillary()
        ptop.standard_name = "air_pressure_at_top_of_atmosphere_model"
        data = cf.Data(10, units="hPa", dtype="f8")
        ptop.set_data(data)
        ptop_key = field.set_construct(ptop, axes=(), copy=False)

        # domain_ancillary: sigma
        sigma = cf.DomainAncillary()
        sigma.standard_name = standard_name
        data = cf.Data([0.6969697, 0.49494949, 0.29292929])
        sigma.set_data(data)
        b = cf.Bounds()
        data = cf.Data(
            [
                [0.7979798, 0.5959596],
                [0.5959596, 0.39393939],
                [0.39393939, 0.19191919],
            ]
        )
        b.set_data(data)
        sigma.set_bounds(b)
        sigma_key = field.set_construct(sigma, axes=axisZ, copy=False)

        # dimension_coordinate: sigma
        sigmac = cf.DimensionCoordinate(source=sigma)
        sigmac_key = field.set_construct(sigmac, axes=axisZ, copy=False)

        # coordinate_reference:
        coordref.set_coordinates({sigmac_key})
        coordref.coordinate_conversion.set_domain_ancillaries(
            {"ptop": ptop_key, "ps": ps_key, "sigma": sigma_key}
        )
        field.set_construct(coordref)

    elif standard_name == "atmosphere_hybrid_sigma_pressure_coordinate":
        computed_standard_name = "air_pressure"

        # Computed vertical corodinates
        aux.standard_name = computed_standard_name
        data = cf.Data([700, 500, 300], "hPa", dtype="f8")
        aux.set_data(data)
        bounds = cf.Bounds()
        data = cf.Data([[800, 600], [600, 400], [400, 200]], "hPa", dtype="f8")
        bounds.set_data(data)
        aux.set_bounds(bounds)

        # domain_ancillary: ps
        ps = cf.DomainAncillary()
        ps.standard_name = "surface_air_pressure"
        data = cf.Data(1000, units="hPa", dtype="f8")
        ps.set_data(data)
        ps_key = field.set_construct(ps, axes=(), copy=False)

        # domain_ancillary: p0
        p0 = cf.DomainAncillary()
        data = cf.Data(1000, units="hPa", dtype="f8")
        p0.set_data(data)
        p0_key = field.set_construct(p0, axes=(), copy=False)

        # domain_ancillary: a
        a = cf.DomainAncillary()
        data = cf.Data([0.6, 0.3, 0], dtype="f8")
        a.set_data(data)
        bounds = cf.Bounds()
        data = cf.Data([[0.75, 0.45], [0.45, 0.15], [0.15, 0]])
        bounds.set_data(data)
        a.set_bounds(bounds)
        a_key = field.set_construct(a, axes=axisZ, copy=False)

        # domain_ancillary: b
        b = cf.DomainAncillary()
        data = cf.Data([0.1, 0.2, 0.3], dtype="f8")
        b.set_data(data)
        bounds = cf.Bounds()
        data = cf.Data([[0.05, 0.15], [0.15, 0.25], [0.25, 0.2]])
        bounds.set_data(data)
        b.set_bounds(bounds)
        b_key = field.set_construct(b, axes=axisZ, copy=False)

        # dimension_coordinate: sigma
        sigma = cf.DimensionCoordinate()
        sigma.standard_name = standard_name
        data = cf.Data([0.6969697, 0.49494949, 0.29292929])
        sigma.set_data(data)
        bounds = cf.Bounds()
        data = cf.Data(
            [
                [0.7979798, 0.5959596],
                [0.5959596, 0.39393939],
                [0.39393939, 0.19191919],
            ]
        )
        bounds.set_data(data)
        sigma.set_bounds(bounds)
        sigma_key = field.set_construct(sigma, axes=axisZ, copy=False)

        # coordinate_reference:
        coordref.set_coordinates({sigma_key})
        coordref.coordinate_conversion.set_domain_ancillaries(
            {"p0": p0_key, "a": a_key, "b": b_key, "ps": ps_key}
        )
        field.set_construct(coordref)

    elif standard_name == "atmosphere_sleve_coordinate":
        computed_standard_name = "altitude"

        # Computed vertical corodinates
        aux.standard_name = computed_standard_name
        data = cf.Data([100, 200, 300], "m", dtype="f8")
        aux.set_data(data)
        bounds = cf.Bounds()
        data = cf.Data([[50, 150], [150, 250], [250, 350]], "m", dtype="f8")
        bounds.set_data(data)
        aux.set_bounds(bounds)

        # domain_ancillary: ztop
        ztop = cf.DomainAncillary()
        ztop.standard_name = "altitude_at_top_of_atmosphere_model"
        data = cf.Data(1000, units="m", dtype="f8")
        ztop.set_data(data)
        ztop_key = field.set_construct(ztop, axes=(), copy=False)

        # domain_ancillary: zsurf1
        zsurf1 = cf.DomainAncillary()
        data = cf.Data(90, units="m", dtype="f8")
        zsurf1.set_data(data)
        zsurf1_key = field.set_construct(zsurf1, axes=(), copy=False)

        # domain_ancillary: zsurf2
        zsurf2 = cf.DomainAncillary()
        data = cf.Data(0.1, units="m", dtype="f8")
        zsurf2.set_data(data)
        zsurf2_key = field.set_construct(zsurf2, axes=(), copy=False)

        # domain_ancillary: b1
        b1 = cf.DomainAncillary()
        data = cf.Data([0.05, 0.04, 0.03], dtype="f8")
        b1.set_data(data)
        bounds = cf.Bounds()
        data = cf.Data([[0.055, 0.045], [0.045, 0.035], [0.035, 0.025]])
        bounds.set_data(data)
        b1.set_bounds(bounds)
        b1_key = field.set_construct(b1, axes=axisZ, copy=False)

        # domain_ancillary: b2
        b2 = cf.DomainAncillary()
        data = cf.Data([0.5, 0.4, 0.3])
        b2.set_data(data)
        bounds = cf.Bounds()
        data = cf.Data([[0.55, 0.45], [0.45, 0.35], [0.35, 0.25]])
        bounds.set_data(data)
        b2.set_bounds(bounds)
        b2_key = field.set_construct(b2, axes=axisZ, copy=False)

        # domain_ancillary: a
        a = cf.DomainAncillary()
        data = cf.Data([0.09545, 0.19636, 0.29727])
        a.set_data(data)
        bounds = cf.Bounds()
        data = cf.Data(
            [[0.044995, 0.145905], [0.145905, 0.246815], [0.246815, 0.347725]]
        )
        bounds.set_data(data)
        a.set_bounds(bounds)
        a_key = field.set_construct(a, axes=axisZ, copy=False)

        # coordinate_reference:
        coordref.coordinate_conversion.set_domain_ancillaries(
            {
                "zsurf1": zsurf1_key,
                "a": a_key,
                "b1": b1_key,
                "b2": b2_key,
                "zsurf2": zsurf2_key,
                "ztop": ztop_key,
            }
        )
        field.set_construct(coordref)

    elif standard_name == "ocean_sigma_coordinate":
        computed_standard_name = "altitude"

        # Computed vertical corodinates
        aux.standard_name = computed_standard_name
        data = cf.Data([10, 20, 30], "m", dtype="f8")
        aux.set_data(data)
        bounds = cf.Bounds()
        data = cf.Data([[5, 15], [15, 25], [25, 35]], "m", dtype="f8")
        bounds.set_data(data)
        aux.set_bounds(bounds)

        # domain_ancillary: depth
        depth = cf.DomainAncillary()
        depth.standard_name = "sea_floor_depth_below_geoid"
        data = cf.Data(-1000.0, units="m")
        depth.set_data(data)
        depth_key = field.set_construct(depth, axes=(), copy=False)

        # domain_ancillary: eta
        eta = cf.DomainAncillary()
        eta.standard_name = "sea_surface_height_above_geoid"
        data = cf.Data(100.0, units="m")
        eta.set_data(data)
        eta_key = field.set_construct(eta, axes=(), copy=False)

        # domain_ancillary: sigma
        sigma = cf.DomainAncillary()
        sigma.standard_name = standard_name
        data = cf.Data([0.1, 0.08888888888888889, 0.07777777777777778])
        sigma.set_data(data)
        bounds = cf.Bounds()
        data = cf.Data(
            [
                [0.10555556, 0.09444444],
                [0.09444444, 0.08333333],
                [0.08333333, 0.07222222],
            ]
        )
        bounds.set_data(data)
        sigma.set_bounds(bounds)
        sigma_key = field.set_construct(sigma, axes=axisZ, copy=False)

        # dimension_coordinate: sigma
        sigmac = cf.DimensionCoordinate(source=sigma)
        sigmac_key = field.set_construct(sigmac, axes=axisZ, copy=False)

        # coordinate_reference:
        coordref.set_coordinates({sigmac_key})
        coordref.coordinate_conversion.set_domain_ancillaries(
            {"depth": depth_key, "eta": eta_key, "sigma": sigma_key}
        )
        field.set_construct(coordref)

    elif standard_name == "ocean_s_coordinate":
        computed_standard_name = "altitude"

        # Computed vertical corodinates
        aux.standard_name = computed_standard_name
        data = cf.Data([15.01701191, 31.86034296, 40.31150319], units="m")
        aux.set_data(data)
        bounds = cf.Bounds()
        data = cf.Data(
            [
                [15.01701191, 23.42877638],
                [23.42877638, 31.86034296],
                [31.86034296, 40.31150319],
            ],
            units="m",
        )
        bounds.set_data(data)
        aux.set_bounds(bounds)

        # domain_ancillary: depth
        depth = cf.DomainAncillary()
        depth.standard_name = "sea_floor_depth_below_geoid"
        data = cf.Data(-1000.0, units="m")
        depth.set_data(data)
        depth_key = field.set_construct(depth, axes=(), copy=False)

        # domain_ancillary: eta
        eta = cf.DomainAncillary()
        eta.standard_name = "sea_surface_height_above_geoid"
        data = cf.Data(100.0, units="m")
        eta.set_data(data)
        eta_key = field.set_construct(eta, axes=(), copy=False)

        # domain_ancillary: depth_c
        depth_c = cf.DomainAncillary()
        data = cf.Data(10.0, units="m")
        depth_c.set_data(data)
        depth_c_key = field.set_construct(depth_c, axes=(), copy=False)

        # domain_ancillary: a
        a = cf.DomainAncillary()
        data = cf.Data(0.5)
        a.set_data(data)
        a_key = field.set_construct(a, axes=(), copy=False)

        # domain_ancillary: b
        b = cf.DomainAncillary()
        data = cf.Data(0.75)
        b.set_data(data)
        b_key = field.set_construct(b, axes=(), copy=False)

        # domain_ancillary: s
        s = cf.DomainAncillary()
        s.standard_name = standard_name
        data = cf.Data([0.1, 0.08, 0.07])
        s.set_data(data)
        bounds = cf.Bounds()
        data = cf.Data([[0.10, 0.09], [0.09, 0.08], [0.08, 0.07]])
        bounds.set_data(data)
        s.set_bounds(bounds)
        s_key = field.set_construct(s, axes=axisZ, copy=False)

        # dimension_coordinate: s
        sc = cf.DimensionCoordinate(source=s)
        sc_key = field.set_construct(sc, axes=axisZ, copy=False)

        # coordinate_reference:
        coordref.set_coordinates({sc_key})
        coordref.coordinate_conversion.set_domain_ancillaries(
            {
                "depth": depth_key,
                "eta": eta_key,
                "depth_c": depth_c_key,
                "a": a_key,
                "b": b_key,
                "s": s_key,
            }
        )
        field.set_construct(coordref)

    elif standard_name == "ocean_s_coordinate_g1":
        computed_standard_name = "altitude"

        # Computed vertical corodinates
        aux.standard_name = computed_standard_name
        data = cf.Data([555.4, 464.32, 373.33], units="m")
        aux.set_data(data)
        bounds = cf.Bounds()
        data = cf.Data(
            [[600.85, 509.86], [509.86, 418.87], [418.87, 327.88]], units="m"
        )
        bounds.set_data(data)
        aux.set_bounds(bounds)

        # domain_ancillary: depth
        depth = cf.DomainAncillary()
        depth.standard_name = "sea_floor_depth_below_geoid"
        data = cf.Data(-1000.0, units="m")
        depth.set_data(data)
        depth_key = field.set_construct(depth, axes=(), copy=False)

        # domain_ancillary: eta
        eta = cf.DomainAncillary()
        eta.standard_name = "sea_surface_height_above_geoid"
        data = cf.Data(100.0, units="m")
        eta.set_data(data)
        eta_key = field.set_construct(eta, axes=(), copy=False)

        # domain_ancillary: depth_c
        depth_c = cf.DomainAncillary()
        data = cf.Data(10.0, units="m")
        depth_c.set_data(data)
        depth_c_key = field.set_construct(depth_c, axes=(), copy=False)

        # domain_ancillary: C
        C = cf.DomainAncillary()
        data = cf.Data([-0.5, -0.4, -0.3])
        C.set_data(data)
        bounds = cf.Bounds()
        data = cf.Data([[-0.55, -0.45], [-0.45, -0.35], [-0.35, -0.25]])
        bounds.set_data(data)
        C.set_bounds(bounds)
        C_key = field.set_construct(C, axes=axisZ, copy=False)

        # domain_ancillary: s
        s = cf.DomainAncillary()
        s.standard_name = standard_name
        data = cf.Data([0.1, 0.08, 0.07])
        s.set_data(data)
        bounds = cf.Bounds()
        data = cf.Data([[0.10, 0.09], [0.09, 0.08], [0.08, 0.07]])
        bounds.set_data(data)
        s.set_bounds(bounds)
        s_key = field.set_construct(s, axes=axisZ, copy=False)

        # dimension_coordinate: s
        sc = cf.DimensionCoordinate(source=s)
        sc_key = field.set_construct(sc, axes=axisZ, copy=False)

        # coordinate_reference:
        coordref.set_coordinates({sc_key})
        coordref.coordinate_conversion.set_domain_ancillaries(
            {
                "depth": depth_key,
                "eta": eta_key,
                "depth_c": depth_c_key,
                "C": C_key,
                "s": s_key,
            }
        )
        field.set_construct(coordref)

    elif standard_name == "ocean_s_coordinate_g2":
        computed_standard_name = "altitude"

        # Computed vertical corodinates
        aux.standard_name = computed_standard_name
        data = cf.Data([555.45454545, 464.36363636, 373.36363636], units="m")
        aux.set_data(data)
        bounds = cf.Bounds()
        data = cf.Data(
            [
                [600.90909091, 509.90909091],
                [509.90909091, 418.90909091],
                [418.90909091, 327.90909091],
            ],
            units="m",
        )
        bounds.set_data(data)
        aux.set_bounds(bounds)

        # domain_ancillary: depth
        depth = cf.DomainAncillary()
        depth.standard_name = "sea_floor_depth_below_geoid"
        data = cf.Data(-1000.0, units="m")
        depth.set_data(data)
        depth_key = field.set_construct(depth, axes=(), copy=False)

        # domain_ancillary: eta
        eta = cf.DomainAncillary()
        eta.standard_name = "sea_surface_height_above_geoid"
        data = cf.Data(100.0, units="m")
        eta.set_data(data)
        eta_key = field.set_construct(eta, axes=(), copy=False)

        # domain_ancillary: depth_c
        depth_c = cf.DomainAncillary()
        data = cf.Data(10.0, units="m")
        depth_c.set_data(data)
        depth_c_key = field.set_construct(depth_c, axes=(), copy=False)

        # domain_ancillary: C
        C = cf.DomainAncillary()
        data = cf.Data([-0.5, -0.4, -0.3])
        C.set_data(data)
        bounds = cf.Bounds()
        data = cf.Data([[-0.55, -0.45], [-0.45, -0.35], [-0.35, -0.25]])
        bounds.set_data(data)
        C.set_bounds(bounds)
        C_key = field.set_construct(C, axes=axisZ, copy=False)

        # domain_ancillary: s
        s = cf.DomainAncillary()
        s.standard_name = standard_name
        data = cf.Data([0.1, 0.08, 0.07])
        s.set_data(data)
        bounds = cf.Bounds()
        data = cf.Data([[0.10, 0.09], [0.09, 0.08], [0.08, 0.07]])
        bounds.set_data(data)
        s.set_bounds(bounds)
        s_key = field.set_construct(s, axes=axisZ, copy=False)

        # dimension_coordinate: s
        sc = cf.DimensionCoordinate(source=s)
        sc_key = field.set_construct(sc, axes=axisZ, copy=False)

        # coordinat
        # coordinate_reference:
        coordref.set_coordinates({sc_key})
        coordref.coordinate_conversion.set_domain_ancillaries(
            {
                "depth": depth_key,
                "eta": eta_key,
                "depth_c": depth_c_key,
                "C": C_key,
                "s": s_key,
            }
        )
        field.set_construct(coordref)

    elif standard_name == "ocean_sigma_z_coordinate":
        computed_standard_name = "altitude"

        # Computed vertical corodinates
        aux.standard_name = computed_standard_name
        data = cf.Data([10.0, 30.0, 40.0], "m", dtype="f8")
        aux.set_data(data)
        bounds = cf.Bounds()
        data = cf.Data(
            [[10.0, 19.0], [25.0, 35.0], [35.0, 45.0]], "m", dtype="f8"
        )
        bounds.set_data(data)
        aux.set_bounds(bounds)

        # domain_ancillary: depth
        depth = cf.DomainAncillary()
        depth.standard_name = "sea_floor_depth_below_geoid"
        data = cf.Data(-1000.0, units="m")
        depth.set_data(data)
        depth_key = field.set_construct(depth, axes=(), copy=False)

        # domain_ancillary: eta
        eta = cf.DomainAncillary()
        eta.standard_name = "sea_surface_height_above_geoid"
        data = cf.Data(100.0, units="m")
        eta.set_data(data)
        eta_key = field.set_construct(eta, axes=(), copy=False)

        # domain_ancillary: depth_c
        depth_c = cf.DomainAncillary()
        data = cf.Data(10.0, units="m")
        depth_c.set_data(data)
        depth_c_key = field.set_construct(depth_c, axes=(), copy=False)

        # domain_ancillary: nsigma
        nsigma = cf.DomainAncillary()
        data = cf.Data(1)
        nsigma.set_data(data)
        nsigma_key = field.set_construct(nsigma, axes=(), copy=False)

        # domain_ancillary: zlev
        zlev = cf.DomainAncillary()
        zlev.standard_name = "altitude"
        data = cf.Data([20, 30, 40], units="m", dtype="f8")
        zlev.set_data(data)
        bounds = cf.Bounds()
        data = cf.Data([[15, 25], [25, 35], [35, 45]], units="m", dtype="f8")
        bounds.set_data(data)
        zlev.set_bounds(bounds)
        zlev_key = field.set_construct(zlev, axes=axisZ, copy=False)

        # domain_ancillary: sigma
        sigma = cf.DomainAncillary()
        sigma.standard_name = standard_name
        data = cf.Data([0.1, 0.08, 0.07])
        sigma.set_data(data)
        bounds = cf.Bounds()
        data = cf.Data([[0.10, 0.09], [0.09, 0.08], [0.08, 0.07]])
        bounds.set_data(data)
        sigma.set_bounds(bounds)
        sigma_key = field.set_construct(sigma, axes=axisZ, copy=False)

        # dimension_coordinate: sigma
        sigmac = cf.DimensionCoordinate(source=sigma)
        sigmac_key = field.set_construct(sigmac, axes=axisZ, copy=False)

        # coordinate_reference:
        coordref.set_coordinates({sigmac_key})
        coordref.coordinate_conversion.set_domain_ancillaries(
            {
                "depth": depth_key,
                "eta": eta_key,
                "depth_c": depth_c_key,
                "nsigma": nsigma_key,
                "zlev": zlev_key,
                "sigma": sigma_key,
            }
        )
        field.set_construct(coordref)

    elif standard_name == "ocean_double_sigma_coordinate":
        computed_standard_name = "altitude"

        # Computed vertical corodinates
        aux.standard_name = computed_standard_name
        data = cf.Data(
            [0.15000000000000002, 0.12, 932.895], units="m", dtype="f8"
        )
        aux.set_data(data)
        bounds = cf.Bounds()
        data = cf.Data(
            [
                [1.50000e-01, 1.35000e-01],
                [1.35000e-01, 1.20000e-01],
                [9.22880e02, 9.32895e02],
            ],
            units="m",
            dtype="f8",
        )
        bounds.set_data(data)
        aux.set_bounds(bounds)

        # domain_ancillary: depth
        depth = cf.DomainAncillary()
        depth.standard_name = "sea_floor_depth_below_geoid"
        data = cf.Data(-1000.0, units="m")
        depth.set_data(data)
        depth_key = field.set_construct(depth, axes=(), copy=False)

        # domain_ancillary: z1
        z1 = cf.DomainAncillary()
        data = cf.Data(2, units="m")
        z1.set_data(data)
        z1_key = field.set_construct(z1, axes=(), copy=False)

        # domain_ancillary: z2
        z2 = cf.DomainAncillary()
        data = cf.Data(1.5, units="m")
        z2.set_data(data)
        z2_key = field.set_construct(z2, axes=(), copy=False)

        # domain_ancillary: a
        a = cf.DomainAncillary()
        data = cf.Data(2.5, units="m")
        a.set_data(data)
        a_key = field.set_construct(a, axes=(), copy=False)

        # domain_ancillary: href
        href = cf.DomainAncillary()
        data = cf.Data(10.5, units="m")
        href.set_data(data)
        href_key = field.set_construct(href, axes=(), copy=False)

        # domain_ancillary: k_c
        k_c = cf.DomainAncillary()
        data = cf.Data(1)
        k_c.set_data(data)
        k_c_key = field.set_construct(k_c, axes=(), copy=False)

        # dimension_coordinate: sigma
        sigma = cf.DomainAncillary()
        sigma.standard_name = standard_name
        data = cf.Data([0.1, 0.08, 0.07])
        sigma.set_data(data)
        bounds = cf.Bounds()
        data = cf.Data([[0.10, 0.09], [0.09, 0.08], [0.08, 0.07]])
        bounds.set_data(data)
        sigma.set_bounds(bounds)
        sigma_key = field.set_construct(sigma, axes=axisZ, copy=False)

        # dimension_coordinate: sigma
        sigmac = cf.DimensionCoordinate(source=sigma)
        sigmac_key = field.set_construct(sigmac, axes=axisZ, copy=False)

        # coordinate_reference:
        coordref.set_coordinates({sigmac_key})
        coordref.coordinate_conversion.set_domain_ancillaries(
            {
                "depth": depth_key,
                "a": a_key,
                "k_c": k_c_key,
                "z1": z1_key,
                "z2": z2_key,
                "href": href_key,
                "sigma": sigma_key,
            }
        )
        field.set_construct(coordref)

    else:
        raise ValueError(
            "Bad standard name: {}, "
            "not an element of FormulaTerms.standard_names".format(
                standard_name
            )
        )

    return (field, aux, computed_standard_name)
コード例 #8
0
class AuxiliaryCoordinateTest(unittest.TestCase):
    f = cf.example_field(1)

    aux1 = cf.AuxiliaryCoordinate()
    aux1.standard_name = "latitude"
    a = numpy.array([
        -30,
        -23.5,
        -17.8123,
        -11.3345,
        -0.7,
        -0.2,
        0,
        0.2,
        0.7,
        11.30003,
        17.8678678,
        23.5,
        30,
    ])
    aux1.set_data(cf.Data(a, "degrees_north"))
    bounds = cf.Bounds()
    b = numpy.empty(a.shape + (2, ))
    b[:, 0] = a - 0.1
    b[:, 1] = a + 0.1
    bounds.set_data(cf.Data(b))
    aux1.set_bounds(bounds)

    def test_AuxiliaryCoordinate_mask_invalid(self):
        a = self.aux1.copy()

        a.mask_invalid()
        self.assertIsNone(a.mask_invalid(inplace=True))

        a.del_bounds()
        a.mask_invalid()
        self.assertIsNone(a.mask_invalid(inplace=True))

    def test_AuxiliaryCoordinate_chunk(self):
        a = self.aux1.copy()
        a.chunk()

    def test_AuxiliaryCoordinate__repr__str__dump(self):
        x = self.f.auxiliary_coordinate("latitude")
        repr(x)
        str(x)
        x.dump(display=False)

    def test_AuxiliaryCoordinate_bounds(self):
        d = self.f.dimension_coordinate("X")
        x = cf.AuxiliaryCoordinate(source=d)

        x.upper_bounds
        x.lower_bounds

    def test_AuxiliaryCoordinate_properties(self):
        x = self.f.auxiliary_coordinate("latitude")

        x.positive = "up"
        self.assertEqual(x.positive, "up")
        del x.positive
        self.assertIsNone(getattr(x, "positive", None))

        x.axis = "Z"
        self.assertEqual(x.axis, "Z")
        del x.axis
        self.assertIsNone(getattr(x, "axis", None))

        d = self.f.dimension_coordinate("X")
        x = cf.AuxiliaryCoordinate(source=d)

    def test_AuxiliaryCoordinate_insert_dimension(self):
        d = self.f.dimension_coordinate("X")
        x = cf.AuxiliaryCoordinate(source=d)

        self.assertEqual(x.shape, (9, ))
        self.assertEqual(x.bounds.shape, (9, 2))

        y = x.insert_dimension(0)
        self.assertEqual(y.shape, (1, 9))
        self.assertEqual(y.bounds.shape, (1, 9, 2), y.bounds.shape)

        x.insert_dimension(-1, inplace=True)
        self.assertEqual(x.shape, (9, 1))
        self.assertEqual(x.bounds.shape, (9, 1, 2), x.bounds.shape)

    def test_AuxiliaryCoordinate_transpose(self):
        x = self.f.auxiliary_coordinate("longitude").copy()

        bounds = cf.Bounds(
            data=cf.Data(numpy.arange(9 * 10 * 4).reshape(9, 10, 4)))
        x.set_bounds(bounds)

        self.assertEqual(x.shape, (9, 10))
        self.assertEqual(x.bounds.shape, (9, 10, 4))

        y = x.transpose()
        self.assertEqual(y.shape, (10, 9))
        self.assertEqual(y.bounds.shape, (10, 9, 4), y.bounds.shape)

        x.transpose([1, 0], inplace=True)
        self.assertEqual(x.shape, (10, 9))
        self.assertEqual(x.bounds.shape, (10, 9, 4), x.bounds.shape)

    def test_AuxiliaryCoordinate_squeeze(self):
        x = self.f.auxiliary_coordinate("longitude").copy()

        bounds = cf.Bounds(
            data=cf.Data(numpy.arange(9 * 10 * 4).reshape(9, 10, 4)))
        x.set_bounds(bounds)
        x.insert_dimension(1, inplace=True)
        x.insert_dimension(0, inplace=True)

        self.assertEqual(x.shape, (1, 9, 1, 10))
        self.assertEqual(x.bounds.shape, (1, 9, 1, 10, 4))

        y = x.squeeze()
        self.assertEqual(y.shape, (9, 10))
        self.assertEqual(y.bounds.shape, (9, 10, 4), y.bounds.shape)

        x.squeeze(2, inplace=True)
        self.assertEqual(x.shape, (1, 9, 10))
        self.assertEqual(x.bounds.shape, (1, 9, 10, 4), x.bounds.shape)

    def test_AuxiliaryCoordinate_floor(self):
        aux = self.aux1.copy()

        a = aux.array
        b = aux.bounds.array

        self.assertTrue((aux.floor().array == numpy.floor(a)).all())
        self.assertTrue((aux.floor().bounds.array == numpy.floor(b)).all())
        self.assertTrue(
            (aux.floor(bounds=False).array == numpy.floor(a)).all())
        self.assertTrue((aux.floor(bounds=False).bounds.array == b).all())

        aux.del_bounds()
        self.assertTrue((aux.floor().array == numpy.floor(a)).all())
        self.assertTrue(
            (aux.floor(bounds=False).array == numpy.floor(a)).all())

        self.assertIsNone(aux.floor(inplace=True))
        self.assertTrue((aux.array == numpy.floor(a)).all())

    def test_AuxiliaryCoordinate_ceil(self):
        aux = self.aux1.copy()

        a = aux.array
        b = aux.bounds.array

        self.assertTrue((aux.ceil().array == numpy.ceil(a)).all())
        self.assertTrue((aux.ceil().bounds.array == numpy.ceil(b)).all())
        self.assertTrue((aux.ceil(bounds=False).array == numpy.ceil(a)).all())
        self.assertTrue((aux.ceil(bounds=False).bounds.array == b).all())

        aux.del_bounds()
        self.assertTrue((aux.ceil().array == numpy.ceil(a)).all())
        self.assertTrue((aux.ceil(bounds=False).array == numpy.ceil(a)).all())

        self.assertIsNone(aux.ceil(inplace=True))
        self.assertTrue((aux.array == numpy.ceil(a)).all())

    def test_AuxiliaryCoordinate_trunc(self):
        aux = self.aux1.copy()

        a = aux.array
        b = aux.bounds.array

        self.assertTrue((aux.trunc().array == numpy.trunc(a)).all())
        self.assertTrue((aux.trunc().bounds.array == numpy.trunc(b)).all())
        self.assertTrue(
            (aux.trunc(bounds=False).array == numpy.trunc(a)).all())
        self.assertTrue((aux.trunc(bounds=False).bounds.array == b).all())

        aux.del_bounds()
        self.assertTrue((aux.trunc().array == numpy.trunc(a)).all())
        self.assertTrue(
            (aux.trunc(bounds=False).array == numpy.trunc(a)).all())

        self.assertIsNone(aux.trunc(inplace=True))
        self.assertTrue((aux.array == numpy.trunc(a)).all())

    def test_AuxiliaryCoordinate_rint(self):
        aux = self.aux1.copy()

        a = aux.array
        b = aux.bounds.array

        x0 = aux.rint()
        x = x0.array

        self.assertTrue((x == numpy.rint(a)).all(), x)
        self.assertTrue((aux.rint().bounds.array == numpy.rint(b)).all())
        self.assertTrue((aux.rint(bounds=False).array == numpy.rint(a)).all())
        self.assertTrue((aux.rint(bounds=False).bounds.array == b).all())

        aux.del_bounds()
        self.assertTrue((aux.rint().array == numpy.rint(a)).all())
        self.assertTrue((aux.rint(bounds=False).array == numpy.rint(a)).all())

        self.assertIsNone(aux.rint(inplace=True))
        self.assertTrue((aux.array == numpy.rint(a)).all())

    def test_AuxiliaryCoordinate_close(self):
        aux = self.aux1.copy()
        aux.close()

    def test_AuxiliaryCoordinate_sin_cos_tan(self):
        aux = self.aux1.copy()

        aux.cos()
        self.assertIsNone(aux.cos(inplace=True))

        aux.sin()
        self.assertIsNone(aux.sin(inplace=True))

        aux.tan()
        self.assertIsNone(aux.tan(inplace=True))

    def test_AuxiliaryCoordinate_log_exp(self):
        aux = self.aux1.copy()

        aux.exp()
        self.assertIsNone(aux.exp(inplace=True))

        aux.log()
        self.assertIsNone(aux.log(inplace=True))

    def test_AuxiliaryCoordinate_count(self):
        aux = self.aux1.copy()

        aux.count()

        aux.del_data()
        with self.assertRaises(Exception):
            aux.count()

    def test_AuxiliaryCoordinate_cyclic(self):
        aux = self.aux1.copy()

        self.assertEqual(aux.cyclic(), set())
        self.assertEqual(aux.cyclic(0), set())
        self.assertEqual(aux.cyclic(), set([0]))

    def test_AuxiliaryCoordinate_roll(self):
        aux = self.aux1.copy()

        aux.roll(0, 3)
        self.assertIsNone(aux.roll(-1, 4, inplace=True))

    def test_AuxiliaryCoordinate_round(self):
        aux = self.aux1.copy()

        a = aux.array
        b = aux.bounds.array

        for decimals in (0, 1, 2, 3, 4, 5):
            aux = self.aux1.copy()

            self.assertTrue(
                (aux.round(decimals).array == numpy.round(a, decimals)).all())
            self.assertTrue((aux.round(decimals).bounds.array == numpy.round(
                b, decimals)).all())
            self.assertTrue(
                (aux.round(decimals,
                           bounds=False).array == numpy.round(a,
                                                              decimals)).all())
            self.assertTrue((aux.round(decimals,
                                       bounds=False).bounds.array == b).all())

            aux.del_bounds()
            self.assertTrue(
                (aux.round(decimals).array == numpy.round(a, decimals)).all())
            self.assertTrue(
                (aux.round(decimals,
                           bounds=False).array == numpy.round(a,
                                                              decimals)).all())

            self.assertIsNone(aux.round(decimals, inplace=True))
            self.assertTrue((aux.array == numpy.round(a, decimals)).all())

    def test_AuxiliaryCoordinate_clip(self):
        aux = self.aux1.copy()

        a = aux.array
        b = aux.bounds.array

        self.assertTrue((aux.clip(-15, 25).array == numpy.clip(a, -15,
                                                               25)).all())
        self.assertTrue(
            (aux.clip(-15, 25).bounds.array == numpy.clip(b, -15, 25)).all())
        self.assertTrue(
            (aux.clip(-15, 25, bounds=False).array == numpy.clip(a, -15,
                                                                 25)).all())
        self.assertTrue((aux.clip(-15, 25,
                                  bounds=False).bounds.array == b).all())

        aux.del_bounds()
        self.assertTrue((aux.clip(-15, 25).array == numpy.clip(a, -15,
                                                               25)).all())
        self.assertTrue(
            (aux.clip(-15, 25, bounds=False).array == numpy.clip(a, -15,
                                                                 25)).all())

        self.assertIsNone(aux.clip(-15, 25, inplace=True))
コード例 #9
0
    def test_create_field(self):
        # Dimension coordinates
        dim1 = cf.DimensionCoordinate(
            data=cf.Data(numpy.arange(10.0), "degrees"))
        dim1.standard_name = "grid_latitude"

        dim0 = cf.DimensionCoordinate(
            data=cf.Data(numpy.arange(9.0) + 20, "degrees"))
        dim0.standard_name = "grid_longitude"
        dim0.data[-1] += 5
        bounds = cf.Data(
            numpy.array([dim0.data.array - 0.5,
                         dim0.data.array + 0.5]).transpose((1, 0)))
        bounds[-2, 1] = 30
        bounds[-1, :] = [30, 36]
        dim0.set_bounds(cf.Bounds(data=bounds))

        dim2 = cf.DimensionCoordinate(
            data=cf.Data([1.5]), bounds=cf.Bounds(data=cf.Data([[1, 2.0]])))
        dim2.standard_name = "atmosphere_hybrid_height_coordinate"

        # Auxiliary coordinates
        ak = cf.DomainAncillary(data=cf.Data([10.0], "m"))
        ak.id = "atmosphere_hybrid_height_coordinate_ak"
        bounds = cf.Bounds(data=cf.Data([[5, 15.0]], units=ak.Units))
        ak.set_bounds(bounds)

        bk = cf.DomainAncillary(data=cf.Data([20.0]))
        bk.id = "atmosphere_hybrid_height_coordinate_bk"
        bounds = cf.Bounds(data=cf.Data([[14, 26.0]]))
        bk.set_bounds(bounds)

        aux2 = cf.AuxiliaryCoordinate(data=cf.Data(
            numpy.arange(-45, 45, dtype="int32").reshape(10, 9),
            units="degree_N",
        ))
        aux2.standard_name = "latitude"

        aux3 = cf.AuxiliaryCoordinate(data=cf.Data(
            numpy.arange(60, 150, dtype="int32").reshape(9, 10),
            units="degreesE",
        ))
        aux3.standard_name = "longitude"

        aux4 = cf.AuxiliaryCoordinate(data=cf.Data(
            numpy.array(
                [
                    "alpha",
                    "beta",
                    "gamma",
                    "delta",
                    "epsilon",
                    "zeta",
                    "eta",
                    "theta",
                    "iota",
                    "kappa",
                ],
                dtype="S",
            )))
        aux4.standard_name = "greek_letters"
        aux4[0] = cf.masked

        # Cell measures
        msr0 = cf.CellMeasure(
            data=cf.Data(1 + numpy.arange(90.0).reshape(9, 10) * 1234, "km 2"))
        msr0.measure = "area"

        # Data
        data = cf.Data(numpy.arange(90.0).reshape(10, 9), "m s-1")

        properties = {"standard_name": "eastward_wind"}

        f = cf.Field(properties=properties)

        axisX = f.set_construct(cf.DomainAxis(9))
        axisY = f.set_construct(cf.DomainAxis(10))
        axisZ = f.set_construct(cf.DomainAxis(1))

        f.set_data(data)

        x = f.set_construct(dim0)
        y = f.set_construct(dim1, axes=[axisY])
        z = f.set_construct(dim2, axes=[axisZ])

        lat = f.set_construct(aux2)
        lon = f.set_construct(aux3, axes=["X", axisY])
        f.set_construct(aux4, axes=["Y"])

        ak = f.set_construct(ak, axes=["Z"])
        bk = f.set_construct(bk, axes=[axisZ])

        # Coordinate references
        coordinate_conversion = cf.CoordinateConversion(
            parameters={
                "grid_mapping_name": "rotated_latitude_longitude",
                "grid_north_pole_latitude": 38.0,
                "grid_north_pole_longitude": 190.0,
            })
        ref0 = cf.CoordinateReference(
            coordinate_conversion=coordinate_conversion,
            coordinates=[x, y, lat, lon],
        )

        f.set_construct(msr0, axes=[axisX, "Y"])

        f.set_construct(ref0)

        orog = cf.DomainAncillary()
        orog.standard_name = "surface_altitude"
        orog.set_data(cf.Data(f.array * 2, "m"))
        orog.transpose([1, 0], inplace=True)

        orog_key = f.set_construct(orog, axes=["X", axisY])

        coordinate_conversion = cf.CoordinateConversion(
            parameters={
                "standard_name": "atmosphere_hybrid_height_coordinate"
            },
            domain_ancillaries={
                "orog": orog_key,
                "a": ak,
                "b": bk
            },
        )
        ref1 = cf.CoordinateReference(
            coordinate_conversion=coordinate_conversion, coordinates=[z])

        f.set_construct(ref1)

        # Field ancillary variables
        g = cf.FieldAncillary()
        g.set_data(f.data)
        g.transpose([1, 0], inplace=True)
        g.standard_name = "ancillary0"
        g *= 0.01
        f.set_construct(g)

        g = cf.FieldAncillary()
        g.set_data(f.data)
        g.standard_name = "ancillary1"
        g *= 0.01
        f.set_construct(g)

        g = cf.FieldAncillary()
        g.set_data(f[0, :].data)
        g.squeeze(inplace=True)
        g.standard_name = "ancillary2"
        g *= 0.001
        f.set_construct(g)

        g = cf.FieldAncillary()
        g.set_data(f[:, 0].data)
        g.squeeze(inplace=True)
        g.standard_name = "ancillary3"
        g *= 0.001
        f.set_construct(g)

        f.flag_values = [1, 2, 4]
        f.flag_meanings = ["a", "bb", "ccc"]

        for cm in cf.CellMethod.create(
                "grid_longitude: mean grid_latitude: max"):
            f.set_construct(cm)

        # Write the file, and read it in
        cf.write(f, self.filename, verbose=0, string=True)

        g = cf.read(self.filename, squeeze=True, verbose=0)[0]

        self.assertTrue(g.equals(f, verbose=0),
                        "Field not equal to itself read back in")

        x = g.dump(display=False)
        x = f.dump(display=False)
コード例 #10
0
class AuxiliaryCoordinateTest(unittest.TestCase):
    filename = os.path.join(os.path.dirname(os.path.abspath(__file__)),
                            'test_file.nc')
    #    f = cf.read(filename)[0]

    aux1 = cf.AuxiliaryCoordinate()
    aux1.standard_name = 'latitude'
    a = numpy.array([
        -30, -23.5, -17.8123, -11.3345, -0.7, -0.2, 0, 0.2, 0.7, 11.30003,
        17.8678678, 23.5, 30
    ])
    aux1.set_data(cf.Data(a, 'degrees_north'))
    bounds = cf.Bounds()
    b = numpy.empty(a.shape + (2, ))
    b[:, 0] = a - 0.1
    b[:, 1] = a + 0.1
    bounds.set_data(cf.Data(b))
    aux1.set_bounds(bounds)

    def test_AuxiliaryCoordinate_mask_invalid(self):
        a = self.aux1.copy()

        _ = a.mask_invalid()
        self.assertIsNone(a.mask_invalid(inplace=True))

        a.del_bounds()
        _ = a.mask_invalid()
        self.assertIsNone(a.mask_invalid(inplace=True))

    def test_AuxiliaryCoordinate_chunk(self):
        a = self.aux1.copy()

        a.chunk()

    def test_AuxiliaryCoordinate__repr__str__dump(self):
        f = cf.read(self.filename)[0]
        x = f.auxiliary_coordinates('latitude').value()

        _ = repr(x)
        _ = str(x)
        _ = x.dump(display=False)

    def test_AuxiliaryCoordinate_bounds(self):
        f = cf.read(self.filename)[0]
        d = f.dimension_coordinates('X').value()
        x = cf.AuxiliaryCoordinate(source=d)

        _ = x.upper_bounds
        _ = x.lower_bounds

    def test_AuxiliaryCoordinate_properties(self):
        f = cf.read(self.filename)[0]
        x = f.auxiliary_coordinates('latitude').value()

        x.positive = 'up'
        self.assertEqual(x.positive, 'up')
        del x.positive
        self.assertIsNone(getattr(x, 'positive', None))

        x.axis = 'Z'
        self.assertEqual(x.axis, 'Z')
        del x.axis
        self.assertIsNone(getattr(x, 'axis', None))

        d = f.dimension_coordinates('X').value()
        x = cf.AuxiliaryCoordinate(source=d)

    def test_AuxiliaryCoordinate_insert_dimension(self):
        f = cf.read(self.filename)[0]
        d = f.dimension_coordinates('X').value()
        x = cf.AuxiliaryCoordinate(source=d)

        self.assertEqual(x.shape, (9, ))
        self.assertEqual(x.bounds.shape, (9, 2))

        y = x.insert_dimension(0)
        self.assertEqual(y.shape, (1, 9))
        self.assertEqual(y.bounds.shape, (1, 9, 2), y.bounds.shape)

        x.insert_dimension(-1, inplace=True)
        self.assertEqual(x.shape, (9, 1))
        self.assertEqual(x.bounds.shape, (9, 1, 2), x.bounds.shape)

    def test_AuxiliaryCoordinate_transpose(self):
        f = cf.read(self.filename)[0]
        x = f.auxiliary_coordinates('longitude').value()

        bounds = cf.Bounds(
            data=cf.Data(numpy.arange(9 * 10 * 4).reshape(9, 10, 4)))
        x.set_bounds(bounds)

        self.assertEqual(x.shape, (9, 10))
        self.assertEqual(x.bounds.shape, (9, 10, 4))

        y = x.transpose()
        self.assertEqual(y.shape, (10, 9))
        self.assertEqual(y.bounds.shape, (10, 9, 4), y.bounds.shape)

        x.transpose([1, 0], inplace=True)
        self.assertEqual(x.shape, (10, 9))
        self.assertEqual(x.bounds.shape, (10, 9, 4), x.bounds.shape)

    def test_AuxiliaryCoordinate_squeeze(self):
        f = cf.read(self.filename)[0]
        x = f.auxiliary_coordinates('longitude').value()

        bounds = cf.Bounds(
            data=cf.Data(numpy.arange(9 * 10 * 4).reshape(9, 10, 4)))
        x.set_bounds(bounds)
        x.insert_dimension(1, inplace=True)
        x.insert_dimension(0, inplace=True)

        self.assertEqual(x.shape, (1, 9, 1, 10))
        self.assertEqual(x.bounds.shape, (1, 9, 1, 10, 4))

        y = x.squeeze()
        self.assertEqual(y.shape, (9, 10))
        self.assertEqual(y.bounds.shape, (9, 10, 4), y.bounds.shape)

        x.squeeze(2, inplace=True)
        self.assertEqual(x.shape, (1, 9, 10))
        self.assertEqual(x.bounds.shape, (1, 9, 10, 4), x.bounds.shape)

    def test_AuxiliaryCoordinate_floor(self):
        aux = self.aux1.copy()

        a = aux.array
        b = aux.bounds.array

        self.assertTrue((aux.floor().array == numpy.floor(a)).all())
        self.assertTrue((aux.floor().bounds.array == numpy.floor(b)).all())
        self.assertTrue(
            (aux.floor(bounds=False).array == numpy.floor(a)).all())
        self.assertTrue((aux.floor(bounds=False).bounds.array == b).all())

        aux.del_bounds()
        self.assertTrue((aux.floor().array == numpy.floor(a)).all())
        self.assertTrue(
            (aux.floor(bounds=False).array == numpy.floor(a)).all())

        self.assertIsNone(aux.floor(inplace=True))
        self.assertTrue((aux.array == numpy.floor(a)).all())

    def test_AuxiliaryCoordinate_ceil(self):
        aux = self.aux1.copy()

        a = aux.array
        b = aux.bounds.array

        self.assertTrue((aux.ceil().array == numpy.ceil(a)).all())
        self.assertTrue((aux.ceil().bounds.array == numpy.ceil(b)).all())
        self.assertTrue((aux.ceil(bounds=False).array == numpy.ceil(a)).all())
        self.assertTrue((aux.ceil(bounds=False).bounds.array == b).all())

        aux.del_bounds()
        self.assertTrue((aux.ceil().array == numpy.ceil(a)).all())
        self.assertTrue((aux.ceil(bounds=False).array == numpy.ceil(a)).all())

        self.assertIsNone(aux.ceil(inplace=True))
        self.assertTrue((aux.array == numpy.ceil(a)).all())

    def test_AuxiliaryCoordinate_trunc(self):
        aux = self.aux1.copy()

        a = aux.array
        b = aux.bounds.array

        self.assertTrue((aux.trunc().array == numpy.trunc(a)).all())
        self.assertTrue((aux.trunc().bounds.array == numpy.trunc(b)).all())
        self.assertTrue(
            (aux.trunc(bounds=False).array == numpy.trunc(a)).all())
        self.assertTrue((aux.trunc(bounds=False).bounds.array == b).all())

        aux.del_bounds()
        self.assertTrue((aux.trunc().array == numpy.trunc(a)).all())
        self.assertTrue(
            (aux.trunc(bounds=False).array == numpy.trunc(a)).all())

        self.assertIsNone(aux.trunc(inplace=True))
        self.assertTrue((aux.array == numpy.trunc(a)).all())

    def test_AuxiliaryCoordinate_rint(self):
        aux = self.aux1.copy()

        a = aux.array
        b = aux.bounds.array

        x0 = aux.rint()
        x = x0.array

        self.assertTrue((x == numpy.rint(a)).all(), x)
        self.assertTrue((aux.rint().bounds.array == numpy.rint(b)).all())
        self.assertTrue((aux.rint(bounds=False).array == numpy.rint(a)).all())
        self.assertTrue((aux.rint(bounds=False).bounds.array == b).all())

        aux.del_bounds()
        self.assertTrue((aux.rint().array == numpy.rint(a)).all())
        self.assertTrue((aux.rint(bounds=False).array == numpy.rint(a)).all())

        self.assertIsNone(aux.rint(inplace=True))
        self.assertTrue((aux.array == numpy.rint(a)).all())

    def test_AuxiliaryCoordinate_close(self):
        aux = self.aux1.copy()

        aux.close()

    def test_AuxiliaryCoordinate_sin_cos_tan(self):
        aux = self.aux1.copy()

        _ = aux.cos()
        self.assertIsNone(aux.cos(inplace=True))

        _ = aux.sin()
        self.assertIsNone(aux.sin(inplace=True))

        _ = aux.tan()
        self.assertIsNone(aux.tan(inplace=True))

    def test_AuxiliaryCoordinate_log_exp(self):
        aux = self.aux1.copy()

        _ = aux.exp()
        self.assertIsNone(aux.exp(inplace=True))

        _ = aux.log()
        self.assertIsNone(aux.log(inplace=True))

    def test_AuxiliaryCoordinate_count(self):
        aux = self.aux1.copy()

        _ = aux.count()

        aux.del_data()
        with self.assertRaises(Exception):
            aux.count()

    def test_AuxiliaryCoordinate_cyclic(self):
        aux = self.aux1.copy()

        self.assertEqual(aux.cyclic(), set())
        self.assertEqual(aux.cyclic(0), set())
        self.assertEqual(aux.cyclic(), set([0]))

    def test_AuxiliaryCoordinate_roll(self):
        aux = self.aux1.copy()

        _ = aux.roll(0, 3)
        self.assertIsNone(aux.roll(-1, 4, inplace=True))

    def test_AuxiliaryCoordinate_round(self):
        aux = self.aux1.copy()

        a = aux.array
        b = aux.bounds.array

        for decimals in (0, 1, 2, 3, 4, 5):
            aux = self.aux1.copy()

            self.assertTrue(
                (aux.round(decimals).array == numpy.round(a, decimals)).all())
            self.assertTrue((aux.round(decimals).bounds.array == numpy.round(
                b, decimals)).all())
            self.assertTrue(
                (aux.round(decimals,
                           bounds=False).array == numpy.round(a,
                                                              decimals)).all())
            self.assertTrue((aux.round(decimals,
                                       bounds=False).bounds.array == b).all())

            aux.del_bounds()
            self.assertTrue(
                (aux.round(decimals).array == numpy.round(a, decimals)).all())
            self.assertTrue(
                (aux.round(decimals,
                           bounds=False).array == numpy.round(a,
                                                              decimals)).all())

            self.assertIsNone(aux.round(decimals, inplace=True))
            self.assertTrue((aux.array == numpy.round(a, decimals)).all())

    def test_AuxiliaryCoordinate_clip(self):
        aux = self.aux1.copy()

        a = aux.array
        b = aux.bounds.array

        self.assertTrue((aux.clip(-15, 25).array == numpy.clip(a, -15,
                                                               25)).all())
        self.assertTrue(
            (aux.clip(-15, 25).bounds.array == numpy.clip(b, -15, 25)).all())
        self.assertTrue(
            (aux.clip(-15, 25, bounds=False).array == numpy.clip(a, -15,
                                                                 25)).all())
        self.assertTrue((aux.clip(-15, 25,
                                  bounds=False).bounds.array == b).all())

        aux.del_bounds()
        self.assertTrue((aux.clip(-15, 25).array == numpy.clip(a, -15,
                                                               25)).all())
        self.assertTrue(
            (aux.clip(-15, 25, bounds=False).array == numpy.clip(a, -15,
                                                                 25)).all())

        self.assertIsNone(aux.clip(-15, 25, inplace=True))
コード例 #11
0
class DimensionCoordinateTest(unittest.TestCase):
    f = cf.example_field(1)

    dim = cf.DimensionCoordinate()
    dim.standard_name = "latitude"
    a = numpy.array([
        -30,
        -23.5,
        -17.8123,
        -11.3345,
        -0.7,
        -0.2,
        0,
        0.2,
        0.7,
        11.30003,
        17.8678678,
        23.5,
        30,
    ])
    dim.set_data(cf.Data(a, "degrees_north"))
    bounds = cf.Bounds()
    b = numpy.empty(a.shape + (2, ))
    b[:, 0] = a - 0.1
    b[:, 1] = a + 0.1
    bounds.set_data(cf.Data(b))
    dim.set_bounds(bounds)

    def test_DimensionCoordinate__repr__str__dump(self):
        x = self.f.dimension_coordinate("X")

        repr(x)
        str(x)
        x.dump(display=False)

    def test_DimensionCoordinate_convert_reference_time(self):
        d = cf.DimensionCoordinate()
        d.set_data(
            cf.Data([1, 2, 3], "months since 2004-1-1", calendar="gregorian"))
        self.assertTrue((d.array == [1.0, 2, 3]).all())

        e = d.copy()
        self.assertIsNone(
            e.convert_reference_time(calendar_months=True, inplace=True))

        f = d.convert_reference_time(calendar_months=True)

        for x in (e, f):
            self.assertTrue((x.array == [31.0, 60.0, 91.0]).all())
            self.assertTrue((x.datetime_array == [
                cf.dt("2004-02-01 00:00:00", calendar="gregorian"),
                cf.dt("2004-03-01 00:00:00", calendar="gregorian"),
                cf.dt("2004-04-01 00:00:00", calendar="gregorian"),
            ]).all())

        self.assertTrue((d.array == [1.0, 2, 3]).all())

        d = cf.DimensionCoordinate()
        d.set_data(
            cf.Data([1, 2, 3], "months since 2004-1-1", calendar="360_day"))
        e = d.copy()
        self.assertIsNone(
            e.convert_reference_time(calendar_months=True, inplace=True))

        f = d.convert_reference_time(calendar_months=True)

        for x in (e, f):
            self.assertTrue((x.array == [30.0, 60.0, 90.0]).all())
            self.assertTrue((x.datetime_array == [
                cf.dt("2004-02-01 00:00:00", calendar="360_day"),
                cf.dt("2004-03-01 00:00:00", calendar="360_day"),
                cf.dt("2004-04-01 00:00:00", calendar="360_day"),
            ]).all())

        self.assertTrue((d.array == [1.0, 2, 3]).all())

        d = cf.DimensionCoordinate()
        d.set_data(
            cf.Data([1, 2, 3], "months since 2004-1-1", calendar="noleap"))
        e = d.copy()
        self.assertIsNone(
            e.convert_reference_time(calendar_months=True, inplace=True))

        f = d.convert_reference_time(calendar_months=True)

        for x in (e, f):
            self.assertTrue((x.array == [31.0, 59.0, 90.0]).all())
            self.assertTrue((x.datetime_array == [
                cf.dt("2004-02-01 00:00:00", calendar="noleap"),
                cf.dt("2004-03-01 00:00:00", calendar="noleap"),
                cf.dt("2004-04-01 00:00:00", calendar="noleap"),
            ]).all())

        self.assertTrue((d.array == [1.0, 2, 3]).all())

    def test_DimensionCoordinate_roll(self):
        x = self.f.dimension_coordinate("X").copy()
        y = self.f.dimension_coordinate("Y")

        x.roll(0, 3)
        with self.assertRaises(Exception):
            y.roll(0, 3)

        x.roll(0, 3)
        x.roll(-1, 3)
        with self.assertRaises(Exception):
            x.roll(2, 3)

        a = x[0]
        a.roll(0, 3)
        self.assertIsNone(a.roll(0, 3, inplace=True))

        x.roll(0, 0)
        x.roll(0, 3, inplace=True)
        self.assertIsNone(x.roll(0, 0, inplace=True))

        x._centre(360)
        x.flip()._centre(360)

        # Test roll on coordinate without bounds:
        g = self.f.copy()
        g.dimension_coordinate("X").del_bounds()

        for shift_by in [1, -1, g.shape[2]]:  # vary roll direction and extent
            g_rolled = g.roll("X", shift=shift_by)

            if shift_by == g.shape[2]:  # shift_by equal to the roll axis size
                g_rolled_0 = g.roll("X", shift=0)
                # A roll of the axes size, or 0, should not change the array:
                self.assertTrue((g_rolled.array == g.array).all())
                self.assertTrue((g_rolled.array == g_rolled_0.array).all())

            for index in range(0, 10):  # check all elements are rolled
                self.assertEqual(g_rolled.array[0, index, 0],
                                 g.array[0, index, -shift_by])

    def test_DimensionCoordinate_cellsize(self):
        d = self.dim.copy()

        c = d.cellsize
        self.assertTrue(numpy.allclose(c.array, 0.2))

        self.assertTrue(d.Units.equals(cf.Units("degrees_north")))
        self.assertTrue(d.bounds.Units.equals(cf.Units("degrees_north")))

        d.override_units("km", inplace=True)
        self.assertTrue(d.Units.equals(cf.Units("km")))
        self.assertTrue(d.bounds.Units.equals(cf.Units("km")))

        c = d.cellsize
        self.assertTrue(c.Units.equals(cf.Units("km")))

        d.del_bounds()
        c = d.cellsize
        self.assertTrue(numpy.allclose(c.array, 0))

    def test_DimensionCoordinate_override_units(self):
        d = self.dim.copy()

        self.assertTrue(d.Units.equals(cf.Units("degrees_north")))
        self.assertTrue(d.bounds.Units.equals(cf.Units("degrees_north")))

        d.override_units("km", inplace=True)
        self.assertTrue(d.Units.equals(cf.Units("km")))
        self.assertTrue(d.bounds.Units.equals(cf.Units("km")))

        c = d.cellsize
        self.assertTrue(c.Units.equals(cf.Units("km")))

    def test_DimensionCoordinate_override_calendar(self):
        d = self.dim.copy()

        self.assertTrue(d.Units.equals(cf.Units("degrees_north")))
        self.assertTrue(d.bounds.Units.equals(cf.Units("degrees_north")))

        d.override_units("days since 2000-01-01", inplace=True)
        self.assertTrue(d.Units.equals(cf.Units("days since 2000-01-01")))
        self.assertTrue(
            d.bounds.Units.equals(cf.Units("days since 2000-01-01")))

        d.override_calendar("360_day", inplace=True)
        self.assertTrue(
            d.Units.equals(
                cf.Units("days since 2000-01-01", calendar="360_day")))
        self.assertTrue(
            d.bounds.Units.equals(
                cf.Units("days since 2000-01-01", calendar="360_day")))

        d.override_calendar("365_day", inplace=True)
        self.assertTrue(
            d.Units.equals(
                cf.Units("days since 2000-01-01", calendar="365_day")))
        self.assertTrue(
            d.bounds.Units.equals(
                cf.Units("days since 2000-01-01", calendar="365_day")))

    def test_DimensionCoordinate_bounds(self):
        x = self.f.dimension_coordinate("X")

        x.upper_bounds
        x.lower_bounds

        self.assertTrue(x.increasing)

        y = x.flip()
        self.assertTrue(y.decreasing)
        self.assertTrue(y.upper_bounds.equals(x.upper_bounds[::-1]))
        self.assertTrue(y.lower_bounds.equals(x.lower_bounds[::-1]))

        x.cellsize
        y.cellsize

        y.del_bounds()

        y.create_bounds()

    def test_DimensionCoordinate_properties(self):
        x = self.f.dimension_coordinate("X").copy()

        x.positive = "up"
        self.assertEqual(x.positive, "up")
        del x.positive

        x.axis = "Z"
        self.assertEqual(x.axis, "Z")
        del x.axis

        x.axis = "T"
        self.assertEqual(x.ndim, 1)

    def test_DimensionCoordinate_insert_dimension(self):
        x = self.f.dimension_coordinate("X").copy()

        self.assertEqual(x.shape, (9, ))
        self.assertEqual(x.bounds.shape, (9, 2))

        y = x.insert_dimension(0)
        self.assertEqual(y.shape, (1, 9))
        self.assertEqual(y.bounds.shape, (1, 9, 2), y.bounds.shape)

        x.insert_dimension(-1, inplace=True)
        self.assertEqual(x.shape, (9, 1))
        self.assertEqual(x.bounds.shape, (9, 1, 2), x.bounds.shape)

    def test_DimensionCoordinate_unary_operation(self):
        d = self.dim

        self.assertLess(d.minimum(), 0)
        self.assertLess(d.bounds.minimum(), 0)

        d = abs(d)
        self.assertGreaterEqual(d.minimum(), 0, d.array)
        self.assertGreaterEqual(d.bounds.minimum(), 0, d.bounds.array)

        d = -d
        self.assertLess(d.minimum(), 0)
        self.assertLess(d.bounds.minimum(), 0)

        d = +d
        self.assertLess(d.minimum(), 0)
        self.assertLess(d.bounds.minimum(), 0)

        d.dtype = int
        d.bounds.dtype = int
        d = ~d

    def test_DimensionCoordinate_binary_operation(self):
        dim = self.dim

        c = dim.array
        b = dim.bounds.array
        c2 = numpy.expand_dims(c, -1)

        x = dim.copy()
        y = dim.copy()

        old = cf.bounds_combination_mode()

        # ------------------------------------------------------------
        # Out-of-place addition
        # ------------------------------------------------------------
        for value in ("AND", "NONE"):
            cf.bounds_combination_mode(value)
            z = x + 2
            self.assertTrue((z.array == c + 2).all())
            self.assertFalse(z.has_bounds())

        for value in ("OR", "XOR"):
            cf.bounds_combination_mode(value)
            z = x + 2
            self.assertTrue((z.array == c + 2).all())
            self.assertTrue((z.bounds.array == b + 2).all())

        for value in ("AND", "OR"):
            cf.bounds_combination_mode(value)
            z = x + y
            self.assertTrue((z.array == c + c).all())
            self.assertTrue((z.bounds.array == b + b).all())

        for value in ("XOR", "NONE"):
            cf.bounds_combination_mode(value)
            z = x + y
            self.assertTrue((z.array == c + c).all())
            self.assertFalse(z.has_bounds())

        x.del_bounds()

        for value in ("AND", "XOR", "OR", "NONE"):
            cf.bounds_combination_mode(value)
            z = x + 2
            self.assertTrue((z.array == c + 2).all())
            self.assertFalse(z.has_bounds())

        for value in ("AND", "NONE"):
            cf.bounds_combination_mode(value)
            z = x + y
            self.assertTrue((z.array == c + c).all())
            self.assertFalse(z.has_bounds())

        for value in ("OR", "XOR"):
            cf.bounds_combination_mode(value)
            z = x + y
            self.assertTrue((z.array == c + c).all())
            self.assertTrue((z.bounds.array == c2 + b).all())

        # ------------------------------------------------------------
        # In-place addition
        # ------------------------------------------------------------
        for value in ("AND", "NONE"):
            cf.bounds_combination_mode(value)
            x = dim.copy()
            x += 2
            self.assertTrue((x.array == c + 2).all())
            self.assertFalse(x.has_bounds())

        for value in ("OR", "XOR"):
            cf.bounds_combination_mode(value)
            x = dim.copy()
            x += 2
            self.assertTrue((x.array == c + 2).all())
            self.assertTrue((x.bounds.array == b + 2).all())

        for value in ("AND", "OR"):
            cf.bounds_combination_mode(value)
            x = dim.copy()
            x += y
            self.assertTrue((x.array == c + c).all())
            self.assertTrue((x.bounds.array == b + b).all())

        for value in ("XOR", "NONE"):
            cf.bounds_combination_mode(value)
            x = dim.copy()
            x += y
            self.assertTrue((x.array == c + c).all())
            self.assertFalse(x.has_bounds())

        for value in ("XOR", "OR"):
            cf.bounds_combination_mode(value)
            x = dim.copy()
            x.del_bounds()
            x += y
            self.assertTrue((x.array == c + c).all())
            self.assertTrue((x.bounds.array == c2 + b).all())

        for value in ("AND", "NONE"):
            cf.bounds_combination_mode(value)
            x = dim.copy()
            x.del_bounds()
            x += y
            self.assertTrue((x.array == c + c).all())
            self.assertFalse(x.has_bounds())

        # ------------------------------------------------------------
        # Reset constant
        # ------------------------------------------------------------
        cf.bounds_combination_mode(old)

    def test_DimensionCoordinate_set_data(self):
        x = cf.DimensionCoordinate()

        y = x.set_data(cf.Data([1, 2, 3]))
        self.assertIsNone(y)
        self.assertTrue(x.has_data())

        # Test inplace
        x.del_data()
        y = x.set_data(cf.Data([1, 2, 3]), inplace=False)
        self.assertIsInstance(y, cf.DimensionCoordinate)
        self.assertFalse(x.has_data())
        self.assertTrue(y.has_data())

        # Exceptions should be raised for 0-d and N-d (N>=2) data
        with self.assertRaises(Exception):
            y = x.set_data(cf.Data([[1, 2, 3]]))

        with self.assertRaises(Exception):
            y = x.set_data(cf.Data(1))

    def test_DimensionCoordinate__setitem__(self):
        d = self.dim.copy()

        d.array
        d.bounds.array

        d[...] = 999
        self.assertTrue(d.bounds.equals(self.dim.bounds, verbose=3))

        d = self.dim.copy()
        e = self.dim.copy()
        d[...] = -e
        self.assertTrue(d.data.equals(-e.data, verbose=3))
        self.assertTrue(d.bounds.equals(-e.bounds, verbose=3))

        d = self.dim.copy()
        e = self.dim.copy()
        e.del_bounds()
        d[...] = -e
        self.assertTrue(d.data.equals(-e.data, verbose=3))
        self.assertTrue(d.bounds.equals(self.dim.bounds, verbose=3))
コード例 #12
0
class DimensionCoordinateTest(unittest.TestCase):
    filename = os.path.join(os.path.dirname(os.path.abspath(__file__)),
                            'test_file.nc')

    #    f = cf.read(filename)[0]

    dim = cf.DimensionCoordinate()
    dim.standard_name = 'latitude'
    a = numpy.array([
        -30, -23.5, -17.8123, -11.3345, -0.7, -0.2, 0, 0.2, 0.7, 11.30003,
        17.8678678, 23.5, 30
    ])
    dim.set_data(cf.Data(a, 'degrees_north'))
    bounds = cf.Bounds()
    b = numpy.empty(a.shape + (2, ))
    b[:, 0] = a - 0.1
    b[:, 1] = a + 0.1
    bounds.set_data(cf.Data(b))
    dim.set_bounds(bounds)

    def test_DimensionCoordinate__repr__str__dump(self):
        f = cf.read(self.filename)[0]
        x = f.dimension_coordinates('X').value()

        _ = repr(x)
        _ = str(x)
        _ = x.dump(display=False)

    def test_DimensionCoordinate_convert_reference_time(self):
        d = cf.DimensionCoordinate()
        d.set_data(
            cf.Data([1, 2, 3], 'months since 2004-1-1', calendar='gregorian'))
        self.assertTrue((d.array == [1., 2, 3]).all())

        e = d.copy()
        self.assertIsNone(
            e.convert_reference_time(calendar_months=True, inplace=True))

        f = d.convert_reference_time(calendar_months=True)

        for x in (e, f):
            self.assertTrue((x.array == [31., 60., 91.]).all())
            self.assertTrue((x.datetime_array == [
                cf.dt('2004-02-01 00:00:00', calendar='gregorian'),
                cf.dt('2004-03-01 00:00:00', calendar='gregorian'),
                cf.dt('2004-04-01 00:00:00', calendar='gregorian')
            ]).all())

        self.assertTrue((d.array == [1., 2, 3]).all())

        d = cf.DimensionCoordinate()
        d.set_data(
            cf.Data([1, 2, 3], 'months since 2004-1-1', calendar='360_day'))
        e = d.copy()
        self.assertIsNone(
            e.convert_reference_time(calendar_months=True, inplace=True))

        f = d.convert_reference_time(calendar_months=True)

        for x in (e, f):
            self.assertTrue((x.array == [30., 60., 90.]).all())
            self.assertTrue((x.datetime_array == [
                cf.dt('2004-02-01 00:00:00', calendar='360_day'),
                cf.dt('2004-03-01 00:00:00', calendar='360_day'),
                cf.dt('2004-04-01 00:00:00', calendar='360_day')
            ]).all())

        self.assertTrue((d.array == [1., 2, 3]).all())

        d = cf.DimensionCoordinate()
        d.set_data(
            cf.Data([1, 2, 3], 'months since 2004-1-1', calendar='noleap'))
        e = d.copy()
        self.assertIsNone(
            e.convert_reference_time(calendar_months=True, inplace=True))

        f = d.convert_reference_time(calendar_months=True)

        for x in (e, f):
            self.assertTrue((x.array == [31., 59., 90.]).all())
            self.assertTrue((x.datetime_array == [
                cf.dt('2004-02-01 00:00:00', calendar='noleap'),
                cf.dt('2004-03-01 00:00:00', calendar='noleap'),
                cf.dt('2004-04-01 00:00:00', calendar='noleap')
            ]).all())

        self.assertTrue((d.array == [1., 2, 3]).all())

    def test_DimensionCoordinate_roll(self):
        f = cf.read(self.filename)[0]

        x = f.dimension_coordinates('X').value()
        y = f.dimension_coordinates('Y').value()

        _ = x.roll(0, 3)
        with self.assertRaises(Exception):
            y.roll(0, 3)

        _ = x.roll(0, 3)
        _ = x.roll(-1, 3)
        with self.assertRaises(Exception):
            _ = x.roll(2, 3)

        a = x[0]
        _ = a.roll(0, 3)
        self.assertIsNone(a.roll(0, 3, inplace=True))

        _ = x.roll(0, 0)
        _ = x.roll(0, 3, inplace=True)
        self.assertIsNone(x.roll(0, 0, inplace=True))

        _ = x._centre(360)
        _ = x.flip()._centre(360)

        # Test roll on coordinate without bounds:
        g = f.copy()
        g.dimension_coordinate('X').del_bounds()

        for shift_by in [1, -1, g.shape[2]]:  # vary roll direction and extent
            g_rolled = g.roll('X', shift=shift_by)

            if shift_by == g.shape[2]:  # shift_by equal to the roll axis size
                g_rolled_0 = g.roll('X', shift=0)
                # A roll of the axes size, or 0, should not change the array:
                self.assertTrue((g_rolled.array == g.array).all())
                self.assertTrue((g_rolled.array == g_rolled_0.array).all())

            for index in range(0, 10):  # check all elements are rolled
                self.assertEqual(g_rolled.array[0, index, 0],
                                 g.array[0, index, -shift_by])

    def test_DimensionCoordinate_cellsize(self):
        d = self.dim.copy()

        c = d.cellsize
        self.assertTrue(numpy.allclose(c.array, 0.2))

        self.assertTrue(d.Units.equals(cf.Units('degrees_north')))
        self.assertTrue(d.bounds.Units.equals(cf.Units('degrees_north')))

        d.override_units('km', inplace=True)
        self.assertTrue(d.Units.equals(cf.Units('km')))
        self.assertTrue(d.bounds.Units.equals(cf.Units('km')))

        c = d.cellsize
        self.assertTrue(c.Units.equals(cf.Units('km')))

        d.del_bounds()
        c = d.cellsize
        self.assertTrue(numpy.allclose(c.array, 0))

    def test_DimensionCoordinate_override_units(self):
        d = self.dim.copy()

        self.assertTrue(d.Units.equals(cf.Units('degrees_north')))
        self.assertTrue(d.bounds.Units.equals(cf.Units('degrees_north')))

        d.override_units('km', inplace=True)
        self.assertTrue(d.Units.equals(cf.Units('km')))
        self.assertTrue(d.bounds.Units.equals(cf.Units('km')))

        c = d.cellsize
        self.assertTrue(c.Units.equals(cf.Units('km')))

    def test_DimensionCoordinate_override_calendar(self):
        d = self.dim.copy()

        self.assertTrue(d.Units.equals(cf.Units('degrees_north')))
        self.assertTrue(d.bounds.Units.equals(cf.Units('degrees_north')))

        d.override_units('days since 2000-01-01', inplace=True)
        self.assertTrue(d.Units.equals(cf.Units('days since 2000-01-01')))
        self.assertTrue(
            d.bounds.Units.equals(cf.Units('days since 2000-01-01')))

        d.override_calendar('360_day', inplace=True)
        self.assertTrue(
            d.Units.equals(
                cf.Units('days since 2000-01-01', calendar='360_day')))
        self.assertTrue(
            d.bounds.Units.equals(
                cf.Units('days since 2000-01-01', calendar='360_day')))

        d.override_calendar('365_day', inplace=True)
        self.assertTrue(
            d.Units.equals(
                cf.Units('days since 2000-01-01', calendar='365_day')))
        self.assertTrue(
            d.bounds.Units.equals(
                cf.Units('days since 2000-01-01', calendar='365_day')))

    def test_DimensionCoordinate_bounds(self):
        f = cf.read(self.filename)[0]
        x = f.dimension_coordinates('X').value()

        _ = x.upper_bounds
        _ = x.lower_bounds

        self.assertTrue(x.increasing)

        y = x.flip()
        self.assertTrue(y.decreasing)
        self.assertTrue(y.upper_bounds.equals(x.upper_bounds[::-1]))
        self.assertTrue(y.lower_bounds.equals(x.lower_bounds[::-1]))

        c = x.cellsize
        c = y.cellsize

        y.del_bounds()

        b = y.create_bounds()

    def test_DimensionCoordinate_properties(self):
        f = cf.read(self.filename)[0]
        x = f.dimension_coordinates('X').value()

        x.positive = 'up'
        self.assertEqual(x.positive, 'up')
        del x.positive

        x.axis = 'Z'
        self.assertEqual(x.axis, 'Z')
        del x.axis

        x.axis = 'T'
        self.assertEqual(x.ndim, 1)

    def test_DimensionCoordinate_insert_dimension(self):
        f = cf.read(self.filename)[0]
        x = f.dimension_coordinates('X').value()

        self.assertEqual(x.shape, (9, ))
        self.assertEqual(x.bounds.shape, (9, 2))

        y = x.insert_dimension(0)
        self.assertEqual(y.shape, (1, 9))
        self.assertEqual(y.bounds.shape, (1, 9, 2), y.bounds.shape)

        x.insert_dimension(-1, inplace=True)
        self.assertEqual(x.shape, (9, 1))
        self.assertEqual(x.bounds.shape, (9, 1, 2), x.bounds.shape)

    def test_DimensionCoordinate_binary_operation(self):
        f = cf.read(self.filename)[0]
        x = f.dimension_coordinates('X').value()

        d = x.array
        b = x.bounds.array
        d2 = numpy.expand_dims(d, -1)

        # --------------------------------------------------------
        # Out-of-place addition
        # --------------------------------------------------------
        c = x + 2
        self.assertTrue((c.array == d + 2).all())
        self.assertTrue((c.bounds.array == b + 2).all())

        c = x + x
        self.assertTrue((c.array == d + d).all())
        self.assertTrue((c.bounds.array == b + d2).all())

        c = x + 2
        self.assertTrue((c.array == d + 2).all())
        self.assertTrue((c.bounds.array == b + 2).all())

        self.assertTrue((x.array == d).all())
        self.assertTrue((x.bounds.array == b).all())

        # --------------------------------------------------------
        # In-place addition
        # --------------------------------------------------------
        x += 2
        self.assertTrue((x.array == d + 2).all())
        self.assertTrue((x.bounds.array == b + 2).all())

        x += x
        self.assertTrue((x.array == (d + 2) * 2).all())
        self.assertTrue((x.bounds.array == b + 2 + d2 + 2).all())

        x += 2
        self.assertTrue((x.array == (d + 2) * 2 + 2).all())
        self.assertTrue((x.bounds.array == b + 2 + d2 + 2 + 2).all())

        # --------------------------------------------------------
        # Out-of-place addition (no bounds)
        # --------------------------------------------------------
        f = cf.read(self.filename)[0]
        x = f.dimension_coordinates('X').value()
        x.del_bounds()

        self.assertFalse(x.has_bounds())

        d = x.array

        c = x + 2
        self.assertTrue((c.array == d + 2).all())

        c = x + x
        self.assertTrue((c.array == d + d).all())

        c = x + 2
        self.assertTrue((c.array == d + 2).all())

        self.assertTrue((x.array == d).all())

        # --------------------------------------------------------
        # In-place addition (no bounds)
        # --------------------------------------------------------
        x += 2
        self.assertTrue((x.array == d + 2).all())

        x += x
        self.assertTrue((x.array == (d + 2) * 2).all())

        x += 2
        self.assertTrue((x.array == (d + 2) * 2 + 2).all())

    def test_DimensionCoordinate_set_data(self):
        x = cf.DimensionCoordinate()

        y = x.set_data(cf.Data([1, 2, 3]))
        self.assertIsNone(y)
        self.assertTrue(x.has_data())

        # Test inplace
        x.del_data()
        y = x.set_data(cf.Data([1, 2, 3]), inplace=False)
        self.assertIsInstance(y, cf.DimensionCoordinate)
        self.assertFalse(x.has_data())
        self.assertTrue(y.has_data())

        # Exceptions should be raised for 0-d and N-d (N>=2) data
        with self.assertRaises(Exception):
            y = x.set_data(cf.Data([[1, 2, 3]]))

        with self.assertRaises(Exception):
            y = x.set_data(cf.Data(1))
コード例 #13
0
    def test_create_field(self):
        # Dimension coordinates
        dim1 = cf.DimensionCoordinate(
            data=cf.Data(numpy.arange(10.), 'degrees'))
        dim1.standard_name = 'grid_latitude'

        dim0 = cf.DimensionCoordinate(
            data=cf.Data(numpy.arange(9.) + 20, 'degrees'))
        dim0.standard_name = 'grid_longitude'
        dim0.data[-1] += 5
        bounds = cf.Data(numpy.array(
            [dim0.data.array-0.5, dim0.data.array+0.5]).transpose((1, 0)))
        bounds[-2, 1] = 30
        bounds[-1, :] = [30, 36]
        dim0.set_bounds(cf.Bounds(data=bounds))

        dim2 = cf.DimensionCoordinate(
            data=cf.Data([1.5]),
            bounds=cf.Bounds(data=cf.Data([[1, 2.]]))
        )
        dim2.standard_name = 'atmosphere_hybrid_height_coordinate'

        # Auxiliary coordinates
        ak = cf.DomainAncillary(data=cf.Data([10.], 'm'))
        ak.id = 'atmosphere_hybrid_height_coordinate_ak'
        bounds = cf.Bounds(data=cf.Data([[5, 15.]], units=ak.Units))
        ak.set_bounds(bounds)

        bk = cf.DomainAncillary(data=cf.Data([20.]))
        bk.id = 'atmosphere_hybrid_height_coordinate_bk'
        bounds = cf.Bounds(data=cf.Data([[14, 26.]]))
        bk.set_bounds(bounds)

        aux2 = cf.AuxiliaryCoordinate(
            data=cf.Data(numpy.arange(-45, 45, dtype='int32').reshape(10, 9),
                         units='degree_N'))
        aux2.standard_name = 'latitude'

        aux3 = cf.AuxiliaryCoordinate(
            data=cf.Data(numpy.arange(60, 150, dtype='int32').reshape(9, 10),
                         units='degreesE'))
        aux3.standard_name = 'longitude'

        aux4 = cf.AuxiliaryCoordinate(
            data=cf.Data(numpy.array(
                ['alpha', 'beta', 'gamma', 'delta', 'epsilon',
                 'zeta', 'eta', 'theta', 'iota', 'kappa'],
                dtype='S'
            ))
        )
        aux4.standard_name = 'greek_letters'
        aux4[0] = cf.masked

        # Cell measures
        msr0 = cf.CellMeasure(
            data=cf.Data(1+numpy.arange(90.).reshape(9, 10)*1234, 'km 2'))
        msr0.measure = 'area'

        # Data
        data = cf.Data(numpy.arange(90.).reshape(10, 9), 'm s-1')

        properties = {'standard_name': 'eastward_wind'}

        f = cf.Field(properties=properties)

        axisX = f.set_construct(cf.DomainAxis(9))
        axisY = f.set_construct(cf.DomainAxis(10))
        axisZ = f.set_construct(cf.DomainAxis(1))

        f.set_data(data)

        x = f.set_construct(dim0)
        y = f.set_construct(dim1, axes=[axisY])
        z = f.set_construct(dim2, axes=[axisZ])

        lat = f.set_construct(aux2)
        lon = f.set_construct(aux3, axes=['X', axisY])
        f.set_construct(aux4, axes=['Y'])

        ak = f.set_construct(ak, axes=['Z'])
        bk = f.set_construct(bk, axes=[axisZ])

        # Coordinate references
        coordinate_conversion = cf.CoordinateConversion(
            parameters={'grid_mapping_name': 'rotated_latitude_longitude',
                        'grid_north_pole_latitude': 38.0,
                        'grid_north_pole_longitude': 190.0})
        ref0 = cf.CoordinateReference(
            coordinate_conversion=coordinate_conversion,
            coordinates=[x, y, lat, lon]
        )

        f.set_construct(msr0, axes=[axisX, 'Y'])

        f.set_construct(ref0)

        orog = cf.DomainAncillary()
        orog.standard_name = 'surface_altitude'
        orog.set_data(cf.Data(f.array*2, 'm'))
        orog.transpose([1, 0], inplace=True)

        orog_key = f.set_construct(orog, axes=['X', axisY])

        coordinate_conversion = cf.CoordinateConversion(
            parameters={
                'standard_name': 'atmosphere_hybrid_height_coordinate'
            },
            domain_ancillaries={
                'orog': orog_key,
                'a': ak,
                'b': bk
            }
        )
        ref1 = cf.CoordinateReference(
            coordinate_conversion=coordinate_conversion, coordinates=[z])

        f.set_construct(ref1)

        # Field ancillary variables
        g = cf.FieldAncillary()
        g.set_data(f.data)
        g.transpose([1, 0], inplace=True)
        g.standard_name = 'ancillary0'
        g *= 0.01
        f.set_construct(g)

        g = cf.FieldAncillary()
        g.set_data(f.data)
        g.standard_name = 'ancillary1'
        g *= 0.01
        f.set_construct(g)

        g = cf.FieldAncillary()
        g.set_data(f[0, :].data)
        g.squeeze(inplace=True)
        g.standard_name = 'ancillary2'
        g *= 0.001
        f.set_construct(g)

        g = cf.FieldAncillary()
        g.set_data(f[:, 0].data)
        g.squeeze(inplace=True)
        g.standard_name = 'ancillary3'
        g *= 0.001
        f.set_construct(g)

        f.flag_values = [1, 2, 4]
        f.flag_meanings = ['a', 'bb', 'ccc']

        for cm in cf.CellMethod.create(
                'grid_longitude: mean grid_latitude: max'):
            f.set_construct(cm)

        # Write the file, and read it in
        cf.write(f, self.filename, verbose=0, string=True)

        g = cf.read(self.filename, squeeze=True, verbose=0)[0]

        self.assertTrue(g.equals(f, verbose=0),
                        "Field not equal to itself read back in")

        x = g.dump(display=False)
        x = f.dump(display=False)