コード例 #1
0
 def __init__(self, H=None):
     self.NoisePredictor = DeepFilter(input_shape=(128, 128, 1),
                                      output_shape=(128, 128, 1),
                                      lr=2e-5,
                                      max_filters=64,
                                      n0_filter_zise=2)
     self.Updator = DeepFilter(input_shape=(128, 128, 2),
                               output_shape=(128, 128, 1),
                               n0_filter_zise=4,
                               lr=1e-5,
                               max_filters=256)
     self.H = H
コード例 #2
0
ファイル: video_filter.py プロジェクト: ortslil64/CGAN-filter
    def __init__(self, hist=4, image_shape=(128, 128)):
        self.Predictor = DeepFilter(input_shape=(image_shape[0],
                                                 image_shape[1], hist),
                                    output_shape=(image_shape[0],
                                                  image_shape[1], 1),
                                    lr=1e-5,
                                    max_filters=256)

        self.NoisePredictor = DeepFilter(input_shape=(image_shape[0],
                                                      image_shape[1], 4),
                                         output_shape=(image_shape[0],
                                                       image_shape[1], 1),
                                         lr=1e-5,
                                         max_filters=128)

        self.Updator = DeepFilter(input_shape=(image_shape[0], image_shape[1],
                                               2),
                                  output_shape=(image_shape[0], image_shape[1],
                                                1),
                                  lr=1e-5,
                                  max_filters=1024)

        self.Likelihood = DeepFilter(input_shape=(image_shape[0],
                                                  image_shape[1], 1),
                                     output_shape=(image_shape[0],
                                                   image_shape[1], 1),
                                     lr=2e-6,
                                     max_filters=1024)

        self.hist = hist
コード例 #3
0
 def __init__(self, H=None, loss_type="l1", sh=128):
     self.timesteps = sh**2
     self.Predictor = TCNPredictor(input_shape=self.timesteps,
                                   timesteps=self.timesteps,
                                   lr=1e-4)
     self.NoisePredictor = DeepFilter(input_shape=(sh, sh, 1),
                                      output_shape=(sh, sh, 1),
                                      lr=1e-4,
                                      max_filters=64,
                                      n0_filter_zise=2,
                                      n0_filters=32)
     self.Updator = DeepFilter(input_shape=(sh, sh, 2),
                               output_shape=(sh, sh, 1),
                               n0_filter_zise=4,
                               lr=1e-4,
                               max_filters=256,
                               n0_filters=32)
     self.H = H
     self.loss_type = loss_type
コード例 #4
0
 def __init__(self, H=None, loss_type="l1", sh=128):
     self.Predictor = DeepFilter(input_shape=(sh, sh, 1),
                                 output_shape=(sh, sh, 1),
                                 n0_filter_zise=4,
                                 lr=1e-4,
                                 max_filters=256,
                                 n0_filters=32)
     self.NoisePredictor = DeepFilter(input_shape=(sh, sh, 1),
                                      output_shape=(sh, sh, 1),
                                      lr=1e-4,
                                      max_filters=64,
                                      n0_filter_zise=2,
                                      n0_filters=32)
     self.Updator = DeepFilter(input_shape=(sh, sh, 2),
                               output_shape=(sh, sh, 1),
                               n0_filter_zise=4,
                               lr=2e-5,
                               max_filters=512,
                               n0_filters=64)
     self.H = H
     self.loss_type = loss_type
     self.p_len = 64
コード例 #5
0
class DeepNoisyBayesianFilterLinearPredictor():
    def __init__(self, H=None):
        self.NoisePredictor = DeepFilter(input_shape=(128, 128, 1),
                                         output_shape=(128, 128, 1),
                                         lr=2e-5,
                                         max_filters=64,
                                         n0_filter_zise=2)
        self.Updator = DeepFilter(input_shape=(128, 128, 2),
                                  output_shape=(128, 128, 1),
                                  n0_filter_zise=4,
                                  lr=1e-5,
                                  max_filters=256)
        self.H = H

    def predict_linear(self, x_old):
        x_new_hat = np.ones_like(x_old)
        x_new_hat = x_new_hat * x_old[-1]
        return x_new_hat

    def train_noise_predictor(self, z_new):
        z_sigma = smooth_var(z_new)
        cmin_z_sigma = np.min(z_sigma) - 3 * np.std(z_sigma)
        cmax_z_sigma = np.max(z_sigma) + 3 * np.std(z_sigma)
        z_sigma_normalized = normalize(z_sigma, cmin_z_sigma, cmax_z_sigma)
        z_output = z_new - np.mean(z_new)
        cmin_z = np.min(z_output) - 3 * np.std(z_output)
        cmax_z = np.max(z_output) + 3 * np.std(z_output)
        z_output_normalized = normalize(z_output, cmin_z, cmax_z)
        z_sigma_normalized = preprocess_data(z_sigma_normalized)
        z_output_normalized = preprocess_data(z_output_normalized)
        self.NoisePredictor.train_step(np.expand_dims(z_sigma_normalized, 3),
                                       np.expand_dims(z_output_normalized, 3),
                                       L=30)

    def train_updator(self, x_old, x_new, z_new):
        cmin_z = np.min(z_new) - 3 * np.std(z_new)
        cmax_z = np.max(z_new) + 3 * np.std(z_new)
        if self.H is None:
            cmin_x = np.min(x_old) - 10 * np.std(x_old)
            cmax_x = np.max(x_old) + 10 * np.std(x_old)
        else:
            cmin_x = cmin_z / self.H
            cmax_x = cmax_z / self.H
        z_new = normalize(z_new, cmin_z, cmax_z)
        x_old = normalize(x_old, cmin_x, cmax_x)
        x_new = normalize(x_new, cmin_x, cmax_x)
        x_new = preprocess_data(x_new)
        x_old = preprocess_data(x_old)

        x_new_hat = self.predict_linear(np.reshape(x_old, (-1)))
        input_data_update = preprocess_Bayesian_data(x_new_hat, z_new)
        self.Updator.train_step(np.expand_dims(input_data_update, 0),
                                np.expand_dims(x_new, 3),
                                L=100)

    def predict_var(self, x_old, z_new):
        cmin_z = np.min(z_new - np.mean(z_new)) - 3 * np.std(z_new)
        cmax_z = np.max(z_new - np.mean(z_new)) + 3 * np.std(z_new)
        if self.H is None:
            cmin_x = np.min(x_old) - 10 * np.std(x_old)
            cmax_x = np.max(x_old) + 10 * np.std(x_old)
        else:
            cmin_x = cmin_z / self.H
            cmax_x = cmax_z / self.H
        x_old_normalized = normalize(x_old, cmin_x, cmax_x)
        x_old_normalized = preprocess_data(x_old_normalized)
        x_new_hat = self.predict_linear(np.reshape(x_old_normalized, (-1)))
        x_stack = []
        for ii in range(30):
            z_sigma = gen_sample()
            #z_sigma = smooth_var(z_sigma)
            cmin_z_sigma = np.min(z_sigma) - 3 * np.std(z_sigma)
            cmax_z_sigma = np.max(z_sigma) + 3 * np.std(z_sigma)

            z_sigma_normalized = normalize(z_sigma, cmin_z_sigma, cmax_z_sigma)
            z_sigma_normalized = preprocess_data(z_sigma_normalized)
            noise_hat = self.NoisePredictor.generator(
                np.expand_dims(z_sigma_normalized,
                               3), training=False)[0].numpy()
            noise_hat = np.reshape(noise_hat, (-1))
            noise_hat = unnormalize(noise_hat, cmin_z, cmax_z)
            noise_hat = smooth(noise_hat)
            z_new_noisy = z_new + noise_hat
            cmin_z_n = np.min(z_new_noisy) - 3 * np.std(z_new_noisy)
            cmax_z_n = np.max(z_new_noisy) + 3 * np.std(z_new_noisy)
            z_new_noisy_normalized = normalize(z_new_noisy, cmin_z_n, cmax_z_n)

            input_data_update = preprocess_Bayesian_data(
                x_new_hat, z_new_noisy_normalized)
            x_new_update = self.Updator.generator(np.expand_dims(
                input_data_update, 0),
                                                  training=False)[0].numpy()
            x_new_update = np.reshape(x_new_update, (-1))
            x_new_update = unnormalize(x_new_update, cmin_x, cmax_x)
            x_stack.append(x_new_update)
        x_stack = np.array(x_stack)
        var = np.var(x_stack, axis=0)
        return var

    def predict_mean(self, x_old, z_new):
        cmin_z = np.min(z_new) - 3 * np.std(z_new)
        cmax_z = np.max(z_new) + 3 * np.std(z_new)
        if self.H is None:
            cmin_x = np.min(x_old) - 10 * np.std(x_old)
            cmax_x = np.max(x_old) + 10 * np.std(x_old)
        else:
            cmin_x = cmin_z / self.H
            cmax_x = cmax_z / self.H
        z_new = normalize(z_new, cmin_z, cmax_z)
        x_old = normalize(x_old, cmin_x, cmax_x)
        x_old = preprocess_data(x_old)
        x_new_hat = self.predict_linear(np.reshape(x_old, (-1)))
        input_data_update = preprocess_Bayesian_data(x_new_hat, z_new)
        x_new_update = self.Updator.generator(np.expand_dims(
            input_data_update, 0),
                                              training=False)[0].numpy()
        x_new_update = np.reshape(x_new_update, (-1))
        x_new_update = unnormalize(x_new_update, cmin_x, cmax_x)
        return x_new_update

    def gen_noise(self, z_new):
        cmin_z = np.min(z_new) - 3 * np.std(z_new)
        cmax_z = np.max(z_new) + 3 * np.std(z_new)
        z_sigma = gen_sample()
        cmin_z_sigma = np.min(z_sigma) - 3 * np.std(z_sigma)
        cmax_z_sigma = np.max(z_sigma) + 3 * np.std(z_sigma)
        z_sigma_normalized = normalize(z_sigma, cmin_z_sigma, cmax_z_sigma)
        z_sigma_normalized = preprocess_data(z_sigma_normalized)
        noise_hat = self.NoisePredictor.generator(np.expand_dims(
            z_sigma_normalized, 3),
                                                  training=False)[0].numpy()
        noise_hat = np.reshape(noise_hat, (-1))
        noise_hat = unnormalize(noise_hat, cmin_z, cmax_z)
        noise_hat = smooth(noise_hat)
        return noise_hat
コード例 #6
0
class TCNBayesianFilter():
    def __init__(self, H=None, loss_type="l1", sh=128):
        self.timesteps = sh**2
        self.Predictor = TCNPredictor(input_shape=self.timesteps,
                                      timesteps=self.timesteps,
                                      lr=1e-4)
        self.NoisePredictor = DeepFilter(input_shape=(sh, sh, 1),
                                         output_shape=(sh, sh, 1),
                                         lr=1e-4,
                                         max_filters=64,
                                         n0_filter_zise=2,
                                         n0_filters=32)
        self.Updator = DeepFilter(input_shape=(sh, sh, 2),
                                  output_shape=(sh, sh, 1),
                                  n0_filter_zise=4,
                                  lr=1e-4,
                                  max_filters=256,
                                  n0_filters=32)
        self.H = H
        self.loss_type = loss_type

    def train_predictor(self, x_old, x_new):
        cmin_x = np.min(x_old) - 10 * np.std(x_old)
        cmax_x = np.max(x_old) + 10 * np.std(x_old)
        x_old = normalize(x_old, cmin_x, cmax_x)
        x_new = normalize(x_new, cmin_x, cmax_x)
        x_new = np.reshape(x_new, (1, self.timesteps, 1))
        x_old = np.reshape(x_old, (1, self.timesteps, 1))
        self.Predictor.train_step(x_old, x_new, self.loss_type)

    def train_noise_predictor(self, z_new):
        z_sigma = smooth_var(z_new)
        cmin_z_sigma = np.min(z_sigma) - 3 * np.std(z_sigma)
        cmax_z_sigma = np.max(z_sigma) + 3 * np.std(z_sigma)
        z_sigma_normalized = normalize(z_sigma, cmin_z_sigma, cmax_z_sigma)
        z_output = z_new - np.mean(z_new)
        cmin_z = np.min(z_output) - 3 * np.std(z_output)
        cmax_z = np.max(z_output) + 3 * np.std(z_output)
        z_output_normalized = normalize(z_output, cmin_z, cmax_z)
        z_sigma_normalized = preprocess_data(z_sigma_normalized)
        z_output_normalized = preprocess_data(z_output_normalized)
        self.NoisePredictor.train_step(np.expand_dims(z_sigma_normalized, 3),
                                       np.expand_dims(z_output_normalized, 3),
                                       L=30)

    def train_updator(self, x_old, x_new, z_new):
        cmin_z = np.min(z_new) - 3 * np.std(z_new)
        cmax_z = np.max(z_new) + 3 * np.std(z_new)
        if self.H is None:
            cmin_x = np.min(x_old) - 10 * np.std(x_old)
            cmax_x = np.max(x_old) + 10 * np.std(x_old)
        else:
            cmin_x = cmin_z / self.H
            cmax_x = cmax_z / self.H
        z_new = normalize(z_new, cmin_z, cmax_z)
        x_new = normalize(x_new, cmin_x, cmax_x)
        x_new = preprocess_data(x_new)
        x_old = normalize(x_old, cmin_x, cmax_x)
        x_new_hat = self.Predictor.predict(x_old)
        input_data_update = preprocess_Bayesian_data(x_new_hat, z_new)
        self.Updator.train_step(np.expand_dims(input_data_update, 0),
                                np.expand_dims(x_new, 3),
                                L=100,
                                loss_type=self.loss_type)

    def predict_var(self, x_old, z_new):
        cmin_z = np.min(z_new - np.mean(z_new)) - 3 * np.std(z_new)
        cmax_z = np.max(z_new - np.mean(z_new)) + 3 * np.std(z_new)
        if self.H is None:
            cmin_x = np.min(x_old) - 10 * np.std(x_old)
            cmax_x = np.max(x_old) + 10 * np.std(x_old)
        else:
            cmin_x = cmin_z / self.H
            cmax_x = cmax_z / self.H
        x_old = normalize(x_old, cmin_x, cmax_x)
        x_new_hat = self.Predictor.predict(x_old)
        x_stack = []
        for ii in range(30):
            z_sigma = gen_sample(v_size=len(x_new_hat))
            #z_sigma = smooth_var(z_sigma)
            cmin_z_sigma = np.min(z_sigma) - 3 * np.std(z_sigma)
            cmax_z_sigma = np.max(z_sigma) + 3 * np.std(z_sigma)

            z_sigma_normalized = normalize(z_sigma, cmin_z_sigma, cmax_z_sigma)
            z_sigma_normalized = preprocess_data(z_sigma_normalized)
            noise_hat = self.NoisePredictor.generator(
                np.expand_dims(z_sigma_normalized,
                               3), training=False)[0].numpy()
            noise_hat = np.reshape(noise_hat, (-1))
            noise_hat = unnormalize(noise_hat, cmin_z, cmax_z)
            noise_hat = smooth(noise_hat)
            z_new_noisy = z_new + noise_hat
            cmin_z_n = np.min(z_new_noisy) - 3 * np.std(z_new_noisy)
            cmax_z_n = np.max(z_new_noisy) + 3 * np.std(z_new_noisy)
            z_new_noisy_normalized = normalize(z_new_noisy, cmin_z_n, cmax_z_n)

            input_data_update = preprocess_Bayesian_data(
                x_new_hat, z_new_noisy_normalized)
            x_new_update = self.Updator.generator(np.expand_dims(
                input_data_update, 0),
                                                  training=False)[0].numpy()
            x_new_update = np.reshape(x_new_update, (-1))
            x_new_update = unnormalize(x_new_update, cmin_x, cmax_x)
            x_stack.append(x_new_update)
        x_stack = np.array(x_stack)
        var = np.var(x_stack, axis=0)
        return var

    def predict_mean(self, x_old, z_new):
        cmin_z = np.min(z_new) - 3 * np.std(z_new)
        cmax_z = np.max(z_new) + 3 * np.std(z_new)
        if self.H is None:
            cmin_x = np.min(x_old) - 10 * np.std(x_old)
            cmax_x = np.max(x_old) + 10 * np.std(x_old)
        else:
            cmin_x = cmin_z / self.H
            cmax_x = cmax_z / self.H
        z_new = normalize(z_new, cmin_z, cmax_z)
        x_old = normalize(x_old, cmin_x, cmax_x)
        x_new_hat = self.Predictor.predict(x_old)
        input_data_update = preprocess_Bayesian_data(x_new_hat, z_new)
        x_new_update = self.Updator.generator(np.expand_dims(
            input_data_update, 0),
                                              training=False)[0].numpy()
        x_new_update = np.reshape(x_new_update, (-1))
        x_new_update = unnormalize(x_new_update, cmin_x, cmax_x)
        return x_new_update

    def prop(self, x_old, z_new):
        cmin_z = np.min(z_new) - 3 * np.std(z_new)
        cmax_z = np.max(z_new) + 3 * np.std(z_new)
        if self.H is None:
            cmin_x = np.min(x_old) - 10 * np.std(x_old)
            cmax_x = np.max(x_old) + 10 * np.std(x_old)
        else:
            cmin_x = cmin_z / self.H
            cmax_x = cmax_z / self.H
        x_old = normalize(x_old, cmin_x, cmax_x)
        x_new_hat = self.Predictor.predict(x_old)
        x_new_hat = np.reshape(x_new_hat, (-1))
        x_new_hat = unnormalize(x_new_hat, cmin_x, cmax_x)
        return x_new_hat

    def gen_noise(self, z_new):
        cmin_z = np.min(z_new) - 3 * np.std(z_new)
        cmax_z = np.max(z_new) + 3 * np.std(z_new)
        z_sigma = gen_sample()
        cmin_z_sigma = np.min(z_sigma) - 3 * np.std(z_sigma)
        cmax_z_sigma = np.max(z_sigma) + 3 * np.std(z_sigma)
        z_sigma_normalized = normalize(z_sigma, cmin_z_sigma, cmax_z_sigma)
        z_sigma_normalized = preprocess_data(z_sigma_normalized)
        noise_hat = self.NoisePredictor.generator(np.expand_dims(
            z_sigma_normalized, 3),
                                                  training=False)[0].numpy()
        noise_hat = np.reshape(noise_hat, (-1))
        noise_hat = unnormalize(noise_hat, cmin_z, cmax_z)
        noise_hat = smooth(noise_hat)
        return noise_hat
コード例 #7
0
ファイル: video_filter.py プロジェクト: ortslil64/CGAN-filter
class DeepNoisyBayesianFilter():
    def __init__(self, hist=4, image_shape=(128, 128)):
        self.Predictor = DeepFilter(input_shape=(image_shape[0],
                                                 image_shape[1], hist),
                                    output_shape=(image_shape[0],
                                                  image_shape[1], 1),
                                    lr=1e-5,
                                    max_filters=256)

        self.NoisePredictor = DeepFilter(input_shape=(image_shape[0],
                                                      image_shape[1], 4),
                                         output_shape=(image_shape[0],
                                                       image_shape[1], 1),
                                         lr=1e-5,
                                         max_filters=128)

        self.Updator = DeepFilter(input_shape=(image_shape[0], image_shape[1],
                                               2),
                                  output_shape=(image_shape[0], image_shape[1],
                                                1),
                                  lr=1e-5,
                                  max_filters=1024)

        self.Likelihood = DeepFilter(input_shape=(image_shape[0],
                                                  image_shape[1], 1),
                                     output_shape=(image_shape[0],
                                                   image_shape[1], 1),
                                     lr=2e-6,
                                     max_filters=1024)

        self.hist = hist

    def train_predictor(self, x_old, x_new):
        x_new = np.expand_dims(x_new, 0)
        x_new = np.expand_dims(x_new, 3)
        x_old = np.expand_dims(x_old, 3)
        x_old = np.transpose(x_old, axes=(3, 1, 2, 0))
        self.Predictor.train_step(x_old, x_new, L=30)

    def train_likelihood(self, z_new, x_new):
        x_new = np.expand_dims(x_new, 0)
        x_new = np.expand_dims(x_new, 3)
        z_new = np.expand_dims(z_new, 0)
        z_new = np.expand_dims(z_new, 3)
        self.Likelihood.train_step(z_new, x_new, L=20)

    def train_noise_predictor(self, x_old, x_new):
        x_new = np.expand_dims(x_new, 0)
        x_new = np.expand_dims(x_new, 3)

        x_old = np.expand_dims(x_old, 3)
        x_old = np.transpose(x_old, axes=(3, 1, 2, 0))

        x_new_pred = self.Predictor.generator(x_old, training=False).numpy()
        x_new_pred = normalize_v(x_new_pred)
        err = x_new - x_new_pred
        err = normalize_v(err)
        var = np.var(x_old, axis=3)
        var = np.expand_dims(var, 3)
        var = normalize_v(var)
        input_data_update = np.concatenate((x_old, var), axis=3)
        self.NoisePredictor.train_step(input_data_update, err, L=30)

    def train_updator(self, x_old, x_new, z_new):
        x_old = np.expand_dims(x_old, 3)
        x_old = np.transpose(x_old, axes=(3, 1, 2, 0))
        x_new_pred = self.Predictor.generator(x_old, training=False).numpy()

        z_new = np.expand_dims(z_new, 0)
        z_new = np.expand_dims(z_new, 3)
        x_new_hat = self.Likelihood.generator(z_new, training=False).numpy()
        x_new_hat = normalize_v(x_new_hat)
        input_data_update = np.concatenate((x_new_hat, x_new_pred), axis=3)
        x_new = np.expand_dims(x_new, 0)
        x_new = np.expand_dims(x_new, 3)
        self.Updator.train_step(input_data_update, x_new, L=20)

    def predict_var(self, x_old, z_new):
        x_new_hat = self.predict_mean(x_old, z_new)
        x_stack = []
        for ii in range(50):
            z_sigma = gen_sample()
            z_sigma = preprocess_data(z_sigma)
            z_sigma = normalize_v(z_sigma)
            z_sigma = np.expand_dims(z_sigma, 3)
            input_data_update = np.concatenate((x_old, z_sigma), axis=3)
            noise_hat = self.NoisePredictor.generator(
                input_data_update, training=False)[0].numpy()

            x_new_hat_noisy = x_new_hat + noise_hat
            x_stack.append(x_new_hat_noisy)
        x_stack = np.array(x_stack)
        var = np.var(x_stack, axis=0)
        return var

    def propogate(self, x_old):
        x_old = np.expand_dims(x_old, 3)
        x_old = np.transpose(x_old, axes=(3, 1, 2, 0))
        x_new_hat = self.Predictor.generator(x_old, training=False).numpy()
        return x_new_hat

    def estimate(self, z_new):
        z_new = np.expand_dims(z_new, 0)
        z_new = np.expand_dims(z_new, 3)
        x_new_hat = self.Likelihood.generator(z_new, training=False).numpy()
        x_new_hat = normalize_v(x_new_hat)
        return x_new_hat

    def predict_mean(self, x_old, z_new):
        x_new_pred = self.propogate(x_old)
        x_new_hat = self.estimate(z_new)
        z_new = np.expand_dims(z_new, 0)
        z_new = np.expand_dims(z_new, 3)
        x_new_mult = np.multiply(x_new_pred, z_new)
        #input_data_update = np.concatenate((z_new, x_new_pred), axis = 3)
        input_data_update = np.concatenate((x_new_hat, x_new_pred), axis=3)
        #input_data_update = x_new_mult
        x_new_update = self.Updator.generator(input_data_update,
                                              training=False)[0].numpy()
        return x_new_update

    def save_weights(self, path):
        Predictor_path = path + '/predictor'
        # InvPredictor_path = path + '/invpredictor'
        Updator_path = path + '/updator'
        Likelihood_path = path + '/likelihood'
        self.Predictor.generator.save_weights(Predictor_path)
        # self.InvPredictor.generator.save_weights(InvPredictor_path)
        self.Updator.generator.save_weights(Updator_path)
        self.Likelihood.generator.save_weights(Likelihood_path)

    def load_weights(self, path):
        Predictor_path = path + '/predictor'
        # InvPredictor_path = path + '/invpredictor'
        Updator_path = path + '/updator'
        Likelihood_path = path + '/likelihood'
        self.Predictor.generator.load_weights(Predictor_path)
        # self.InvPredictor.generator.save_weights(InvPredictor_path)
        self.Updator.generator.load_weights(Updator_path)
        self.Likelihood.generator.load_weights(Likelihood_path)