def py_load_pickle(path, max_value): depthmap, targets = pickle.load(open(path.numpy(), "rb")) depthmap = preprocess_depthmap(depthmap) depthmap = depthmap / max_value depthmap = tf.image.resize( depthmap, (CONFIG.IMAGE_TARGET_HEIGHT, CONFIG.IMAGE_TARGET_WIDTH)) targets = preprocess_targets(targets, CONFIG.TARGET_INDEXES) return depthmap, targets
def py_load_pickle(path, max_value=7.5): path_ = path if isinstance(path, str) else path.numpy() depthmap, targets = pickle.load(open(path_, "rb")) depthmap = preprocess_depthmap(depthmap) depthmap = depthmap / max_value depthmap = tf.image.resize(depthmap, (IMAGE_TARGET_HEIGHT, IMAGE_TARGET_WIDTH)) targets = preprocess_targets(targets, TARGET_INDEXES) return depthmap, targets
def py_load_pickle(path, max_value): rgbd_tuple, targets = pickle.load(open(path.numpy(), "rb")) rgb = rgbd_tuple[0] # shape: (240, 180, 3) if getattr(CONFIG, 'DATASET_IS_BGR', False): rgb = rgb[:, :, ::-1] # BGR -> RGB depthmap = rgbd_tuple[1] # shape: (240, 180) rgb = preprocess_depthmap(rgb) rgb = rgb / 255. depthmap = preprocess_depthmap(depthmap) depthmap = depthmap / max_value depthmap = tf.expand_dims(depthmap, -1) # shape: (240, 180, 1) rgbd = tf.concat([rgb, depthmap], axis=2) rgbd = tf.image.resize( rgbd, (CONFIG.IMAGE_TARGET_HEIGHT, CONFIG.IMAGE_TARGET_WIDTH)) targets = preprocess_targets(targets, CONFIG.TARGET_INDEXES) return rgbd, targets