コード例 #1
0
    def __init__(self,
                 input_shapes,
                 axis=1,
                 name=None,
                 M=nn.IIDGaussian(std=0.001),
                 N=nn.IIDGaussian(std=0.001),
                 b=nn.Constant(0)):
        assert axis >= 1
        self.axis = axis
        name = "unnamed" if name is None else name

        self.y_shape, self.u_shape = input_shapes
        self.y_dim = int(np.prod(self.y_shape[self.axis - 1:]))
        self.u_dim, = self.u_shape

        self.M = nn.parameter(nn.init_array(
            M, (self.y_dim, self.y_dim, self.u_dim)),
                              name=name + ".M")
        self.N = nn.parameter(nn.init_array(N, (self.y_dim, self.u_dim)),
                              name=name + ".N")
        if b is None:
            self.b = None
        else:
            self.b = nn.parameter(nn.init_array(b, (self.y_dim, )),
                                  name=name + ".b")  # TODO: not regularizable
コード例 #2
0
ファイル: demo_cifar.py プロジェクト: zclfly/cgt
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--profile",action="store_true")
    parser.add_argument("--unittest",action="store_true")
    parser.add_argument("--epochs",type=int,default=10)
    args = parser.parse_args()

    batchsize = 64
    Xshape = (batchsize, 3, 32, 32)
    X = cgt.tensor4("X", fixed_shape = Xshape)
    y = cgt.vector("y", fixed_shape = (batchsize,), dtype='i4')

    conv1 = nn.SpatialConvolution(3, 32, kernelshape=(5,5), pad=(2,2), 
        weight_init=nn.IIDGaussian(std=1e-4))(X)
    relu1 = nn.rectify(conv1)
    pool1 = nn.max_pool_2d(relu1, kernelshape=(3,3), stride=(2,2))
    conv2 = nn.SpatialConvolution(32, 32, kernelshape=(5,5), pad=(2,2), 
        weight_init=nn.IIDGaussian(std=0.01))(relu1)
    relu2 = nn.rectify(conv2)
    pool2 = nn.max_pool_2d(relu2, kernelshape=(3,3), stride=(2,2))
    conv3 = nn.SpatialConvolution(32, 64, kernelshape=(5,5), pad=(2,2), 
        weight_init=nn.IIDGaussian(std=0.01))(pool2)
    pool3 = nn.max_pool_2d(conv3, kernelshape=(3,3), stride=(2,2))
    relu3 = nn.rectify(pool3)
    d0,d1,d2,d3 = relu3.shape
    flatlayer = relu3.reshape([d0,d1*d2*d3])
    nfeats = cgt.infer_shape(flatlayer)[1]
    ip1 = nn.Affine(nfeats, 10)(flatlayer)
    logprobs = nn.logsoftmax(ip1)
    loss = -logprobs[cgt.arange(batchsize), y].mean()

    params = nn.get_parameters(loss)
    updates = rmsprop_updates(loss, params, stepsize=1e-3)
    
    train = cgt.function(inputs=[X, y], outputs=[loss], updates=updates)

    if args.profile: cgt.profiler.start()

    data = np.load("/Users/joschu/Data/cifar-10-batches-py/cifar10.npz")
    Xtrain = data["X_train"]
    ytrain = data["y_train"]

    print fmt_row(10, ["Epoch","Train NLL","Train Err","Test NLL","Test Err","Epoch Time"])
    for i_epoch in xrange(args.epochs):
        for start in xrange(0, Xtrain.shape[0], batchsize):
            tstart = time.time()
            end = start+batchsize
            print train(Xtrain[start:end], ytrain[start:end]), time.time()-tstart
            if start > batchsize*5: break
        # elapsed = time.time() - tstart
        # trainerr, trainloss = computeloss(Xtrain[:len(Xtest)], ytrain[:len(Xtest)])
        # testerr, testloss = computeloss(Xtest, ytest)
        # print fmt_row(10, [i_epoch, trainloss, trainerr, testloss, testerr, elapsed])
        if args.profile: 
            cgt.profiler.print_stats()
            return
        if args.unittest:
            break
コード例 #3
0
 def build_fc_return_loss(X, y):
     """
     Build fully connected network and return loss
     """
     np.random.seed(0)
     h1 = nn.rectify(
         nn.Affine(28 * 28, 256, weight_init=nn.IIDGaussian(std=.1))(X))
     h2 = nn.rectify(
         nn.Affine(256, 256, weight_init=nn.IIDGaussian(std=.1))(h1))
     logprobs = nn.logsoftmax(
         nn.Affine(256, 10, weight_init=nn.IIDGaussian(std=.1))(h2))
     neglogliks = -logprobs[cgt.arange(X.shape[0]), y]
     loss = neglogliks.mean()
     return loss
コード例 #4
0
ファイル: api.py プロジェクト: TZ2016/snn
def _init_optim_state(ws, reset=False):
    if 'optim_state' in ws and not reset: return
    config = ws['config']
    if 'optim_state' in ws:
        print "Reusing cached optim_state"
        theta = ws['optim_state']['theta']
    elif 'snapshot' in config:
        print "Loading optim_state from previous snapshot: %s" % config[
            'snapshot']
        ws['optim_state'] = pickle.load(open(config['snapshot'], 'r'))
        theta = ws['optim_state']['theta']
    else:
        init_method = config['init_theta']['distr']
        if init_method == 'XavierNormal':
            init_theta = nn.XavierNormal(**config['init_theta']['params'])
        elif init_method == 'gaussian':
            init_theta = nn.IIDGaussian(**config['init_theta']['params'])
        else:
            raise ValueError('unknown init distribution')
        theta = nn.init_array(init_theta,
                              (ws['param_col'].get_total_size(), 1)).flatten()
    method = config['opt_method'].lower()
    if method == 'rmsprop':
        optim_create = lambda t: rmsprop_create(t,
                                                step_size=config['step_size'])
    elif method == 'adam':
        optim_create = lambda t: adam_create(t, step_size=config['step_size'])
    else:
        raise ValueError('unknown optimization method: %s' % method)
    if reset or 'optim_state' not in ws:
        ws['optim_state'] = optim_create(theta)
コード例 #5
0
    def make_updater_convnet_theano():
        X = TT.tensor4("X")  # so shapes can be inferred
        y = TT.ivector("y")
        np.random.seed(0)
        stepsize = TT.scalar("stepsize")
        layer1 = SpatialConvolutionTheano(1,
                                          32,
                                          kernelshape=(3, 3),
                                          pad=(0, 0),
                                          weight_init=nn.IIDGaussian(std=.1))
        conv1 = nn.rectify(layer1(X))
        pool1 = theano.tensor.signal.downsample.max_pool_2d(conv1,
                                                            ds=(3, 3),
                                                            st=(2, 2))
        layer2 = SpatialConvolutionTheano(32,
                                          32,
                                          kernelshape=(3, 3),
                                          pad=(0, 0),
                                          weight_init=nn.IIDGaussian(std=.1))
        conv2 = nn.rectify(layer2(pool1))
        pool2 = theano.tensor.signal.downsample.max_pool_2d(conv2,
                                                            ds=(3, 3),
                                                            st=(2, 2))
        d0, d1, d2, d3 = pool2.shape
        flatlayer = pool2.reshape([d0, d1 * d2 * d3])
        nfeats = 800  # theano doens't know how to calculate shapes before compiling
        # the function, so this needs to be computed by hand
        layer3 = AffineTheano(nfeats, 10)
        ip1 = layer3(flatlayer)
        logprobs = logsoftmax_theano(ip1)
        loss = -logprobs[TT.arange(X.shape[0]), y].mean()

        params = [
            layer1.weight, layer1.bias, layer2.weight, layer2.bias,
            layer3.weight, layer3.bias
        ]
        gparams = TT.grad(loss, params)
        updates = [(p, p - stepsize * gp) for (p, gp) in zip(params, gparams)]
        return theano.function([X, y, stepsize],
                               loss,
                               updates=updates,
                               allow_input_downcast=True)
コード例 #6
0
    def make_updater_fc_theano():
        X = TT.matrix("X")
        y = TT.ivector("y")
        np.random.seed(0)
        stepsize = TT.scalar("stepsize")
        layer1 = AffineTheano(28 * 28, 256, weight_init=nn.IIDGaussian(std=.1))
        h1 = nn.rectify(layer1(X))
        layer2 = AffineTheano(256, 256, weight_init=nn.IIDGaussian(std=.1))
        h2 = nn.rectify(layer2(h1))
        logprobs = logsoftmax_theano(
            AffineTheano(256, 10, weight_init=nn.IIDGaussian(std=.1))(h2))
        neglogliks = -logprobs[TT.arange(X.shape[0]), y]
        loss = neglogliks.mean()

        params = [layer1.weight, layer1.bias, layer2.weight, layer2.bias]
        gparams = TT.grad(loss, params)
        updates = [(p, p - stepsize * gp) for (p, gp) in zip(params, gparams)]
        return theano.function([X, y, stepsize],
                               loss,
                               updates=updates,
                               allow_input_downcast=True)
コード例 #7
0
 def build_convnet_return_loss(X, y):
     np.random.seed(0)
     conv1 = nn.rectify(
         nn.SpatialConvolution(1,
                               32,
                               kernelshape=(3, 3),
                               pad=(0, 0),
                               weight_init=nn.IIDGaussian(std=.1))(X))
     pool1 = nn.max_pool_2d(conv1, kernelshape=(3, 3), stride=(2, 2))
     conv2 = nn.rectify(
         nn.SpatialConvolution(32,
                               32,
                               kernelshape=(3, 3),
                               pad=(0, 0),
                               weight_init=nn.IIDGaussian(std=.1))(pool1))
     pool2 = nn.max_pool_2d(conv2, kernelshape=(3, 3), stride=(2, 2))
     d0, d1, d2, d3 = pool2.shape
     flatlayer = pool2.reshape([d0, d1 * d2 * d3])
     nfeats = cgt.infer_shape(flatlayer)[1]
     logprobs = nn.logsoftmax(nn.Affine(nfeats, 10)(flatlayer))
     loss = -logprobs[cgt.arange(X.shape[0]), y].mean()
     return loss
コード例 #8
0
    def __init__(self, n_actions):
        Serializable.__init__(self, n_actions)
        cgt.set_precision('double')
        n_in = 128
        o_no = cgt.matrix("o_no", fixed_shape=(None, n_in))
        a_n = cgt.vector("a_n", dtype='i8')
        q_n = cgt.vector("q_n")
        oldpdist_np = cgt.matrix("oldpdists")

        h0 = (o_no - 128.0) / 128.0
        nhid = 64
        h1 = cgt.tanh(
            nn.Affine(128, nhid, weight_init=nn.IIDGaussian(std=.1))(h0))
        probs_na = nn.softmax(
            nn.Affine(nhid, n_actions,
                      weight_init=nn.IIDGaussian(std=0.01))(h1))
        logprobs_na = cgt.log(probs_na)
        b = cgt.size(o_no, 0)
        logps_n = logprobs_na[cgt.arange(b), a_n]
        surr = (logps_n * q_n).mean()
        kl = (oldpdist_np * cgt.log(oldpdist_np / probs_na)).sum(axis=1).mean()

        params = nn.get_parameters(surr)
        gradsurr = cgt.grad(surr, params)
        flatgrad = cgt.concatenate([p.flatten() for p in gradsurr])

        lam = cgt.scalar()
        penobj = surr - lam * kl
        self._f_grad_lagrangian = cgt.function(
            [lam, oldpdist_np, o_no, a_n, q_n],
            cgt.concatenate([p.flatten() for p in cgt.grad(penobj, params)]))
        self.f_pdist = cgt.function([o_no], probs_na)

        self.f_probs = cgt.function([o_no], probs_na)
        self.f_surr_kl = cgt.function([oldpdist_np, o_no, a_n, q_n],
                                      [surr, kl])
        self.f_gradlogp = cgt.function([oldpdist_np, o_no, a_n, q_n], flatgrad)

        self.pc = ParamCollection(params)
コード例 #9
0
ファイル: neural_value.py プロジェクト: bchu/deeprlhw2
    def __init__(self, num_features=None, num_hidden=100):
        stepsize = 0.01
        # with shape (batchsize, ncols)
        X = cgt.matrix("X", fixed_shape=(1, num_features))
        # y: a symbolic variable representing the rewards, which are integers
        y = cgt.scalar("y", dtype='float64')

        hid1 = nn.rectify(
            nn.Affine(num_features,
                      num_hidden,
                      weight_init=nn.IIDGaussian(std=.1),
                      bias_init=nn.Constant(1))(X))
        # One final fully-connected layer, and then a linear activation output for reward
        output = nn.Affine(num_hidden,
                           1,
                           weight_init=nn.IIDGaussian(std=.1),
                           bias_init=nn.Constant(1))(hid1)
        abs_deviation = cgt.abs(output - y).mean()
        params = nn.get_parameters(abs_deviation)
        gparams = cgt.grad(abs_deviation, params)

        updates = [(p, p - stepsize * gp) for (p, gp) in zip(params, gparams)]
        self.predictor = cgt.function([X], output)
        self.updater = cgt.function([X, y], abs_deviation, updates=updates)
コード例 #10
0
def build_fcn_action_cond_encoder_net(input_shapes, levels=None):
    x_shape, u_shape = input_shapes
    x_c_dim = x_shape[0]
    x1_c_dim = 16
    levels = levels or [3]
    levels = sorted(set(levels))

    X = cgt.tensor4('X', fixed_shape=(None, ) + x_shape)
    U = cgt.matrix('U', fixed_shape=(None, ) + u_shape)

    # encoding
    Xlevels = {}
    for level in range(levels[-1] + 1):
        if level == 0:
            Xlevel = X
        else:
            if level == 1:
                xlevelm1_c_dim = x_c_dim
                xlevel_c_dim = x1_c_dim
            else:
                xlevelm1_c_dim = xlevel_c_dim
                xlevel_c_dim = 2 * xlevel_c_dim
            Xlevel_1 = nn.rectify(
                nn.SpatialConvolution(xlevelm1_c_dim,
                                      xlevel_c_dim,
                                      kernelshape=(3, 3),
                                      pad=(1, 1),
                                      stride=(1, 1),
                                      name='conv%d_1' % level,
                                      weight_init=nn.IIDGaussian(std=0.01))(
                                          Xlevels[level - 1]))
            Xlevel_2 = nn.rectify(
                nn.SpatialConvolution(
                    xlevel_c_dim,
                    xlevel_c_dim,
                    kernelshape=(3, 3),
                    pad=(1, 1),
                    stride=(1, 1),
                    name='conv%d_2' % level,
                    weight_init=nn.IIDGaussian(std=0.01))(Xlevel_1))
            Xlevel = nn.max_pool_2d(Xlevel_2,
                                    kernelshape=(2, 2),
                                    pad=(0, 0),
                                    stride=(2, 2))
        Xlevels[level] = Xlevel

    # bilinear
    Xlevels_next_pred_0 = {}
    Ylevels = OrderedDict()
    Ylevels_diff_pred = OrderedDict()
    for level in levels:
        Xlevel = Xlevels[level]
        Xlevel_diff_pred = Bilinear(input_shapes,
                                    b=None,
                                    axis=2,
                                    name='bilinear%d' % level)(Xlevel, U)
        Xlevels_next_pred_0[level] = Xlevel + Xlevel_diff_pred
        Ylevels[level] = Xlevel.reshape(
            (Xlevel.shape[0], cgt.mul_multi(Xlevel.shape[1:])))
        Ylevels_diff_pred[level] = Xlevel_diff_pred.reshape(
            (Xlevel_diff_pred.shape[0],
             cgt.mul_multi(Xlevel_diff_pred.shape[1:])))

    # decoding
    Xlevels_next_pred = {}
    for level in range(levels[-1] + 1)[::-1]:
        if level == levels[-1]:
            Xlevel_next_pred = Xlevels_next_pred_0[level]
        else:
            if level == 0:
                xlevelm1_c_dim = x_c_dim
            elif level < levels[-1] - 1:
                xlevel_c_dim = xlevelm1_c_dim
                xlevelm1_c_dim = xlevelm1_c_dim // 2
            Xlevel_next_pred_2 = SpatialDeconvolution(
                xlevel_c_dim,
                xlevel_c_dim,
                kernelshape=(2, 2),
                pad=(0, 0),
                stride=(2, 2),
                name='upsample%d' % (level + 1),
                weight_init=nn.IIDGaussian(std=0.01))(Xlevels_next_pred[
                    level +
                    1])  # TODO initialize with bilinear # TODO should rectify?
            Xlevel_next_pred_1 = nn.rectify(
                SpatialDeconvolution(
                    xlevel_c_dim,
                    xlevel_c_dim,
                    kernelshape=(3, 3),
                    pad=(1, 1),
                    stride=(1, 1),
                    name='deconv%d_2' % (level + 1),
                    weight_init=nn.IIDGaussian(std=0.01))(Xlevel_next_pred_2))
            nonlinearity = nn.rectify if level > 0 else cgt.tanh
            Xlevel_next_pred = nonlinearity(
                SpatialDeconvolution(
                    xlevel_c_dim,
                    xlevelm1_c_dim,
                    kernelshape=(3, 3),
                    pad=(1, 1),
                    stride=(1, 1),
                    name='deconv%d_1' % (level + 1),
                    weight_init=nn.IIDGaussian(std=0.01))(Xlevel_next_pred_1))
            if level in Xlevels_next_pred_0:
                coefs = nn.parameter(nn.init_array(nn.Constant(0.5), (2, )),
                                     name='sum%d.coef' % level)
                Xlevel_next_pred = coefs[0] * Xlevel_next_pred + coefs[
                    1] * Xlevels_next_pred_0[level]
            # TODO: tanh should be after sum
        Xlevels_next_pred[level] = Xlevel_next_pred

    X_next_pred = Xlevels_next_pred[0]
    Y = cgt.concatenate(Ylevels.values(), axis=1)
    Y_diff_pred = cgt.concatenate(Ylevels_diff_pred.values(), axis=1)

    X_diff = cgt.tensor4('X_diff', fixed_shape=(None, ) + x_shape)
    X_next = X + X_diff
    loss = ((X_next - X_next_pred)**2).mean(axis=0).sum() / 2.

    net_name = 'FcnActionCondEncoderNet_levels' + ''.join(
        str(level) for level in levels)
    input_vars = OrderedDict([(var.name, var) for var in [X, U, X_diff]])
    pred_vars = OrderedDict([('Y_diff_pred', Y_diff_pred), ('Y', Y),
                             ('X_next_pred', X_next_pred)])
    return net_name, input_vars, pred_vars, loss
コード例 #11
0
    def __init__(self, obs_dim, ctrl_dim):

        cgt.set_precision('double')
        Serializable.__init__(self, obs_dim, ctrl_dim)

        self.obs_dim = obs_dim
        self.ctrl_dim = ctrl_dim

        o_no = cgt.matrix("o_no", fixed_shape=(None, obs_dim))
        a_na = cgt.matrix("a_na", fixed_shape=(None, ctrl_dim))
        adv_n = cgt.vector("adv_n")
        oldpdist_np = cgt.matrix("oldpdist", fixed_shape=(None, 2 * ctrl_dim))
        self.logstd = logstd_1a = nn.parameter(np.zeros((1, self.ctrl_dim)),
                                               name="std_1a")
        std_1a = cgt.exp(logstd_1a)

        # Here's where we apply the network
        h0 = o_no
        nhid = 32
        h1 = cgt.tanh(
            nn.Affine(obs_dim, nhid, weight_init=nn.IIDGaussian(std=0.1))(h0))
        h2 = cgt.tanh(
            nn.Affine(nhid, nhid, weight_init=nn.IIDGaussian(std=0.1))(h1))
        mean_na = nn.Affine(nhid,
                            ctrl_dim,
                            weight_init=nn.IIDGaussian(std=0.01))(h2)

        b = cgt.size(o_no, 0)
        std_na = cgt.repeat(std_1a, b, axis=0)

        oldmean_na = oldpdist_np[:, 0:self.ctrl_dim]
        oldstd_na = oldpdist_np[:, self.ctrl_dim:2 * self.ctrl_dim]

        logp_n = ((-.5) * cgt.square(
            (a_na - mean_na) / std_na).sum(axis=1)) - logstd_1a.sum()
        oldlogp_n = ((-.5) * cgt.square(
            (a_na - oldmean_na) / oldstd_na).sum(axis=1)
                     ) - cgt.log(oldstd_na).sum(axis=1)

        ratio_n = cgt.exp(logp_n - oldlogp_n)

        surr = (ratio_n * adv_n).mean()

        pdists_np = cgt.concatenate([mean_na, std_na], axis=1)
        # kl = cgt.log(sigafter/)

        params = nn.get_parameters(surr)

        oldvar_na = cgt.square(oldstd_na)
        var_na = cgt.square(std_na)
        kl = (cgt.log(std_na / oldstd_na) +
              (oldvar_na + cgt.square(oldmean_na - mean_na)) / (2 * var_na) -
              .5).sum(axis=1).mean()

        lam = cgt.scalar()
        penobj = surr - lam * kl
        self._compute_surr_kl = cgt.function([oldpdist_np, o_no, a_na, adv_n],
                                             [surr, kl])
        self._compute_grad_lagrangian = cgt.function(
            [lam, oldpdist_np, o_no, a_na, adv_n],
            cgt.concatenate([p.flatten() for p in cgt.grad(penobj, params)]))
        self.f_pdist = cgt.function([o_no], pdists_np)

        self.f_objs = cgt.function([oldpdist_np, o_no, a_na, adv_n],
                                   [surr, kl])

        self.pc = ParamCollection(params)