def __init__(self, x, y, color="blue", bgcolor="white"): self.y_values = y[:] if type(x) == ArrayDataSource: self.x_values = x.get_data()[:] plot = create_line_plot((x, self.y_values), color=color, bgcolor=bgcolor, add_grid=True, add_axis=True) else: self.x_values = x[:] plot = create_line_plot((self.x_values, self.y_values), color=color, bgcolor=bgcolor, add_grid=True, add_axis=True) plot.resizable = "" plot.bounds = [PLOT_SIZE, PLOT_SIZE] plot.unified_draw = True plot.tools.append(PanTool(plot, drag_button="right")) plot.tools.append(MoveTool(plot)) plot.overlays.append(ZoomTool(plot, tool_mode="box", always_on=False)) self.plot = plot self.numpoints = len(self.x_values) self.current_index = self.numpoints / 2 self.increment = 2
def create_plot(): # Create some data numpts = 200 x = sort(random(numpts)) y = random(numpts) color = exp(-(x**2 + y**2)) # Create a plot data obect and give it this data pd = ArrayPlotData() pd.set_data("index", x) pd.set_data("value", y) pd.set_data("color", color) # Create the plot plot = Plot(pd) plot.plot(("index", "value", "color"), type="cmap_scatter", name="my_plot", color_mapper=jet, marker="square", fill_alpha=0.5, marker_size=6, outline_color="black", border_visible=True, bgcolor="white") # Tweak some of the plot properties plot.title = "Colormapped Scatter Plot" plot.padding = 50 plot.x_grid.visible = False plot.y_grid.visible = False plot.x_axis.font = "modern 16" plot.y_axis.font = "modern 16" # Set colors #plot.title_color = "white" #for axis in plot.x_axis, plot.y_axis: # axis.trait_set(title_color="white", tick_label_color="white") # Right now, some of the tools are a little invasive, and we need the # actual ColomappedScatterPlot object to give to them cmap_renderer = plot.plots["my_plot"][0] # Attach some tools to the plot plot.tools.append(PanTool(plot, constrain_key="shift")) zoom = ZoomTool(component=plot, tool_mode="box", always_on=False) plot.overlays.append(zoom) selection = ColormappedSelectionOverlay(cmap_renderer, fade_alpha=0.35, selection_type="mask") cmap_renderer.overlays.append(selection) plot.tools.append(MoveTool(plot, drag_button="right")) return plot
def main(): # Create some x-y data series to plot x = linspace(-2.0, 10.0, 100) pd = ArrayPlotData(index=x) for i in range(5): pd.set_data("y" + str(i), jn(i, x)) # Create some line plots of some of the data plot = Plot( pd, bgcolor="none", padding=30, border_visible=True, overlay_border=True, use_backbuffer=False) plot.legend.visible = True plot.plot(("index", "y0", "y1", "y2"), name="j_n, n<3", color="auto") plot.plot(("index", "y3"), name="j_3", color="auto") plot.tools.append(PanTool(plot)) zoom = ZoomTool(component=plot, tool_mode="box", always_on=False) plot.overlays.append(zoom) # Create the mlab test mesh and get references to various parts of the # VTK pipeline f = mlab.figure(size=(600, 500)) m = mlab.test_mesh() scene = mlab.gcf().scene render_window = scene.render_window renderer = scene.renderer rwi = scene.interactor plot.resizable = "" plot.bounds = [200, 200] plot.padding = 25 plot.bgcolor = "lightgray" plot.outer_position = [30, 30] plot.tools.append(MoveTool(component=plot, drag_button="right")) container = OverlayPlotContainer(bgcolor="transparent", fit_window=True) container.add(plot) # Create the Enable Window window = EnableVTKWindow( rwi, renderer, component=container, #istyle_class = tvtk.InteractorStyleSwitch, #istyle_class = tvtk.InteractorStyle, istyle_class=tvtk.InteractorStyleTrackballCamera, bgcolor="transparent", event_passthrough=True, ) mlab.show() return window, render_window
def create_colorbar(colormap): colorbar = ColorBar(index_mapper=LinearMapper(range=colormap.range), color_mapper=colormap, orientation='v', resizable='', height=400, width=30, padding=20) colorbar.tools.append(RangeSelection(component=colorbar)) colorbar.overlays.append( RangeSelectionOverlay(component=colorbar, border_color="white", alpha=0.8, fill_color="lightgray")) colorbar.tools.append(MoveTool(colorbar, drag_button="left")) return colorbar
def _plot_default(self): # Create the data and the PlotData object x = linspace(-14, 14, 100) y = sin(x) * x**3 plotdata = ArrayPlotData(x=x, y=y) # Create a Plot and associate it with the PlotData plot = Plot(plotdata) # Create a scatter plot in the Plot plot.plot(("x", "y"), type="scatter", color="blue") plot.tools.append(PanTool(plot)) # Add our custom overlay to the plot overlay = CustomOverlay(plot) # Add the MoveTool to the overlay so it can be dragged around usin gthe # right mouse button. overlay.tools.append(MoveTool(overlay, drag_button="right")) plot.overlays.append(overlay) return plot
def main(): from tvtk.api import tvtk from mayavi import mlab from enable.vtk_backend.vtk_window import EnableVTKWindow f = mlab.figure(size=(900, 850)) m = mlab.test_mesh() scene = mlab.gcf().scene render_window = scene.render_window renderer = scene.renderer rwi = scene.interactor # Create the plot timer_controller = TimerController() plots = create_plot_component(timer_controller) specplot, timeplot, spectrogram = plots for i, p in enumerate(plots): p.resizable = "" p.bgcolor = "transparent" p.bounds = [200, 200] p.outer_x = 0 p.outer_y = i * 250 p.tools.append(MoveTool(p, drag_button="right")) p.tools.append(PanTool(p)) p.tools.append(ZoomTool(p)) spectrogram.tools[-1].tool_mode = "range" spectrogram.tools[-1].axis = "value" spectrogram.tools[-2].constrain = True spectrogram.tools[-2].constrain_direction = "y" container = OverlayPlotContainer(bgcolor="transparent", fit_window=True) container.add(*plots) container.timer_callback = timer_controller.on_timer window = EnableVTKWindow( rwi, renderer, component=container, istyle_class=tvtk.InteractorStyleTrackballCamera, bgcolor="transparent", event_passthrough=True, ) mlab.show()
def _create_plot_component(): # Create some x-y data series to plot x = linspace(-2.0, 10.0, 100) pd = ArrayPlotData(index=x) for i in range(5): pd.set_data("y" + str(i), jn(i, x)) # Create some line plots of some of the data plot1 = Plot(pd) plot1.plot(("index", "y0", "y1", "y2"), name="j_n, n<3", color="red") plot1.plot(("index", "y3"), name="j_3", color="blue") # Tweak some of the plot properties plot1.title = "Inset Plot" plot1.padding = 50 # Attach some tools to the plot plot1.tools.append(PanTool(plot1)) zoom = ZoomTool(component=plot1, tool_mode="box", always_on=False) plot1.overlays.append(zoom) # Create a second scatter plot of one of the datasets, linking its # range to the first plot plot2 = Plot(pd, range2d=plot1.range2d, padding=50) plot2.plot(('index', 'y3'), type="scatter", color="blue", marker="circle") plot2.resizable = "" plot2.bounds = [250, 250] plot2.position = [550, 150] plot2.bgcolor = "white" plot2.border_visible = True plot2.unified_draw = True plot2.tools.append(PanTool(plot2)) plot2.tools.append(MoveTool(plot2, drag_button="right")) zoom = ZoomTool(component=plot2, tool_mode="box", always_on=False) plot2.overlays.append(zoom) # Create a container and add our plots container = OverlayPlotContainer() container.add(plot1) container.add(plot2) return container
def image_histogram_plot_component(self): xs = np.arange(0, len(self.im)) ys = np.arange(0, len(self.im[0])) index = GridDataSource(xdata=xs, ydata=ys, sort_order=('ascending', 'ascending')) index_mapper = GridMapper(range=DataRange2D(index)) color_source = ImageData(data=np.flipud(self.im), value_depth=1) reversed_grays = reverse(Greys) color_mapper = reversed_grays(DataRange1D(color_source)) plot = CMapImagePlot( index=index, index_mapper=index_mapper, value=color_source, value_mapper=color_mapper, ) #: Add overlay for zoom data_box_overlay = MyDataBox( component=plot, data_position=[0, 0], data_bounds=self.data_bounds, ) move_tool = MoveTool(component=data_box_overlay) resize_tool = ResizeTool(component=data_box_overlay) data_box_overlay.tools.append(move_tool) data_box_overlay.tools.append(resize_tool) data_box_overlay.on_trait_change(self.update_position, 'position') data_box_overlay.on_trait_change(self.update_data_bounds, 'bounds') #: Add to plot plot.overlays.append(data_box_overlay) return plot
def image_histogram_plot_component(self): xs = np.arange(0, len(self.im)) ys = np.arange(0, len(self.im[0])) index = GridDataSource(xdata=xs, ydata=ys, sort_order=('ascending', 'ascending')) index_mapper = GridMapper(range=DataRange2D(index)) color_source = ImageData(data=self.im, value_depth=1) reversed_grays = reverse(Greys) color_mapper = reversed_grays(DataRange1D(color_source)) plot = CMapImagePlot( index=index, index_mapper=index_mapper, value=color_source, value_mapper=color_mapper, orientation='h', origin='top left', ) self.data_box_overlay = DataBox( component=plot, data_position=[0, 0], data_bounds=[self.my_data_bounds, self.my_data_bounds], ) move_tool = MoveTool(component=self.data_box_overlay) self.data_box_overlay.tools.append(move_tool) self.data_box_overlay.on_trait_change(self.update_my_position, 'position') #: Add to plot plot.overlays.append(self.data_box_overlay) return plot
def __init__(self, **kw): super(MLabChacoPlot, self).__init__(**kw) self.prices = get_data() x = self.prices['Date'] pd = ArrayPlotData(index = x) pd.set_data("y", self.prices["Crude Supply"]) # Create some line plots of some of the data plot = Plot(pd, bgcolor="none", padding=30, border_visible=True, overlay_border=True, use_backbuffer=False) #plot.legend.visible = True plot.plot(("index", "y"), name="Crude Price", color=(.3, .3, .8, .8)) #plot.tools.append(PanTool(plot)) plot.tools.append(PanTool(plot, constrain=True, drag_button="right", constrain_direction="x")) range_plt = plot.plots['Crude Price'][0] range_selection = RangeSelection(range_plt, left_button_selects=True) range_selection.on_trait_change(self.update_interval, 'selection') range_plt.tools.append(range_selection) range_plt.overlays.append(RangeSelectionOverlay(range_plt)) zoom = ZoomTool(component=plot, tool_mode="range", always_on=False, axis="index", max_zoom_out_factor=1.0,) plot.overlays.append(zoom) # Set the plot's bottom axis to use the Scales ticking system scale_sys = CalendarScaleSystem(fill_ratio=0.4, default_numlabels=5, default_numticks=10,) tick_gen = ScalesTickGenerator(scale=scale_sys) bottom_axis = ScalesPlotAxis(plot, orientation="bottom", tick_generator=tick_gen, label_color="white", line_color="white") # Hack to remove default axis - FIXME: how do I *replace* an axis? del(plot.underlays[-2]) plot.overlays.append(bottom_axis) # Create the mlab test mesh and get references to various parts of the # VTK pipeline f = mlab.figure(size=(700,500)) self.m = mlab.points3d(self.prices['Gasoline Supply'], self.prices['Jet Fuel Supply'], self.prices['Distillate Supply'], self.prices['Crude Supply']) # Add another glyph module to render the full set of points g2 = Glyph() g2.glyph.glyph_source.glyph_source.glyph_type = "circle" g2.glyph.glyph_source.glyph_source.filled = True g2.actor.property.opacity = 0.75 self.m.module_manager.source.add_module(g2) # Set a bunch of properties on the scene to make things look right self.m.module_manager.scalar_lut_manager.lut_mode = 'PuBuGn' self.m.glyph.mask_points.random_mode = False self.m.glyph.mask_points.on_ratio = 1 self.m.scene.isometric_view() self.m.scene.background = (.9, 0.95, 1.0) scene = mlab.gcf().scene render_window = scene.render_window renderer = scene.renderer rwi = scene.interactor plot.resizable = "" plot.bounds = [600,120] plot.padding = 25 plot.bgcolor = "white" plot.outer_position = [30,30] plot.tools.append(MoveTool(component=plot,drag_button="right")) container = OverlayPlotContainer(bgcolor = "transparent", fit_window = True) container.add(plot) # Create the Enable Window window = EnableVTKWindow(rwi, renderer, component=container, istyle_class = tvtk.InteractorStyleTrackballCamera, bgcolor = "transparent", event_passthrough = True, ) mlab.show()