コード例 #1
0
ファイル: n_step_rnn.py プロジェクト: mitmul/chainer
def n_step_rnn_impl(
        f, n_layers, dropout_ratio, hx, cx, ws, bs, xs, use_bi_direction):
    direction = 2 if use_bi_direction else 1
    hx = chainer.functions.separate(hx)
    use_cell = cx is not None
    if use_cell:
        cx = chainer.functions.separate(cx)
    else:
        cx = [None] * len(hx)

    xs_next = xs
    hy = []
    cy = []
    for layer in six.moves.range(n_layers):

        # Forward RNN
        if layer == 0:
            xs = xs_next
        else:
            xs = _dropout_sequence(xs_next, dropout_ratio)
        idx = direction * layer
        h, c, h_forward = _one_directional_loop(
            f, xs, hx[idx], cx[idx], ws[idx], bs[idx])
        hy.append(h)
        cy.append(c)

        if use_bi_direction:
            # Backward RNN
            idx = direction * layer + 1
            if layer == 0:
                xs = xs_next
            else:
                xs = _dropout_sequence(xs_next, dropout_ratio)
            h, c, h_backward = _one_directional_loop(
                f, reversed(xs), hx[idx], cx[idx], ws[idx], bs[idx])
            h_backward.reverse()
            # Concat
            xs_next = [concat.concat([hfi, hbi], axis=1) for hfi, hbi in
                       six.moves.zip(h_forward, h_backward)]
            hy.append(h)
            cy.append(c)
        else:
            # Uni-directional RNN
            xs_next = h_forward

    ys = xs_next
    hy = stack.stack(hy)
    if use_cell:
        cy = stack.stack(cy)
    else:
        cy = None
    return hy, cy, tuple(ys)
コード例 #2
0
def n_step_rnn_impl(
        f, n_layers, dropout_ratio, hx, cx, ws, bs, xs, use_bi_direction):
    direction = 2 if use_bi_direction else 1
    hx = chainer.functions.separate(hx)
    use_cell = cx is not None
    if use_cell:
        cx = chainer.functions.separate(cx)
    else:
        cx = [None] * len(hx)

    xs_next = xs
    hy = []
    cy = []
    for layer in six.moves.range(n_layers):

        # Forward RNN
        if layer == 0:
            xs = xs_next
        else:
            xs = _dropout_sequence(xs_next, dropout_ratio)
        idx = direction * layer
        h, c, h_forward = _one_directional_loop(
            f, xs, hx[idx], cx[idx], ws[idx], bs[idx])
        hy.append(h)
        cy.append(c)

        if use_bi_direction:
            # Backward RNN
            idx = direction * layer + 1
            if layer == 0:
                xs = xs_next
            else:
                xs = _dropout_sequence(xs_next, dropout_ratio)
            h, c, h_backward = _one_directional_loop(
                f, reversed(xs), hx[idx], cx[idx], ws[idx], bs[idx])
            h_backward.reverse()
            # Concat
            xs_next = [concat.concat([hfi, hbi], axis=1) for hfi, hbi in
                       six.moves.zip(h_forward, h_backward)]
            hy.append(h)
            cy.append(c)
        else:
            # Uni-directional RNN
            xs_next = h_forward

    ys = xs_next
    hy = stack.stack(hy)
    if use_cell:
        cy = stack.stack(cy)
    else:
        cy = None
    return hy, cy, tuple(ys)
コード例 #3
0
ファイル: n_step_lstm.py プロジェクト: jekbradbury/chainer
def n_step_lstm_base(
        n_layers, dropout_ratio, hx, cx, ws, bs, xs, train, use_cudnn,
        use_bi_direction):
    """Base function for Stack LSTM/BiLSTM functions.

    This function is used at :func:`chainer.functions.n_step_lstm` and
    :func:`chainer.functions.n_step_bilstm`.
    This function's behavior depends on following arguments,
    ``activation`` and ``use_bi_direction``.

    Args:
        n_layers(int): Number of layers.
        dropout_ratio(float): Dropout ratio.
        hx (chainer.Variable): Variable holding stacked hidden states.
            Its shape is ``(S, B, N)`` where ``S`` is number of layers and is
            equal to ``n_layers``, ``B`` is mini-batch size, and ``N`` is
            dimention of hidden units.
        cx (chainer.Variable): Variable holding stacked cell states.
            It has the same shape as ``hx``.
        ws (list of list of chainer.Variable): Weight matrices. ``ws[i]``
            represents weights for i-th layer.
            Each ``ws[i]`` is a list containing eight matrices.
            ``ws[i][j]`` is corresponding with ``W_j`` in the equation.
            Only ``ws[0][j]`` where ``0 <= j < 4`` is ``(I, N)`` shape as they
            are multiplied with input variables. All other matrices has
            ``(N, N)`` shape.
        bs (list of list of chainer.Variable): Bias vectors. ``bs[i]``
            represnents biases for i-th layer.
            Each ``bs[i]`` is a list containing eight vectors.
            ``bs[i][j]`` is corresponding with ``b_j`` in the equation.
            Shape of each matrix is ``(N,)`` where ``N`` is dimention of
            hidden units.
        xs (list of chainer.Variable): A list of :class:`~chainer.Variable`
            holding input values. Each element ``xs[t]`` holds input value
            for time ``t``. Its shape is ``(B_t, I)``, where ``B_t`` is
            mini-batch size for time ``t``, and ``I`` is size of input units.
            Note that this functions supports variable length sequences.
            When sequneces has different lengths, sort sequences in descending
            order by length, and transpose the sorted sequence.
            :func:`~chainer.functions.transpose_sequence` transpose a list
            of :func:`~chainer.Variable` holding sequence.
            So ``xs`` needs to satisfy
            ``xs[t].shape[0] >= xs[t + 1].shape[0]``.
        train (bool): If ``True``, this function executes dropout.
        use_cudnn (bool): If ``True``, this function uses cuDNN if available.
        use_bi_direction (bool): If ``True``, this function uses Bi-directional
            LSTM.

    Returns:
        tuple: This functions returns a tuple concaining three elements,
            ``hy``, ``cy`` and ``ys``.
            - ``hy`` is an updated hidden states whose shape is same as ``hx``.
            - ``cy`` is an updated cell states whose shape is same as ``cx``.
            - ``ys`` is a list of :class:`~chainer.Variable` . Each element
              ``ys[t]`` holds hidden states of the last layer corresponding
              to an input ``xs[t]``. Its shape is ``(B_t, N)`` where ``B_t`` is
              mini-batch size for time ``t``, and ``N`` is size of hidden
              units. Note that ``B_t`` is the same value as ``xs[t]``.

    .. seealso::

       :func:`chainer.functions.n_step_lstm`
       :func:`chainer.functions.n_step_bilstm`

    """

    xp = cuda.get_array_module(hx, hx.data)

    if use_cudnn and xp is not numpy and cuda.cudnn_enabled and \
       _cudnn_version >= 5000:
        states = get_random_state().create_dropout_states(dropout_ratio)
        # flatten all input variables
        inputs = tuple(itertools.chain(
            (hx, cx),
            itertools.chain.from_iterable(ws),
            itertools.chain.from_iterable(bs),
            xs))
        if use_bi_direction:
            rnn = NStepBiLSTM(n_layers, states, train=train)
        else:
            rnn = NStepLSTM(n_layers, states, train=train)

        ret = rnn(*inputs)
        hy, cy = ret[:2]
        ys = ret[2:]
        return hy, cy, ys

    else:
        direction = 2 if use_bi_direction else 1
        split_size = n_layers * direction
        hx = split_axis.split_axis(hx, split_size, axis=0, force_tuple=True)
        hx = [reshape.reshape(h, h.shape[1:]) for h in hx]
        cx = split_axis.split_axis(cx, split_size, axis=0, force_tuple=True)
        cx = [reshape.reshape(c, c.shape[1:]) for c in cx]

        xws = [_stack_weight([w[2], w[0], w[1], w[3]]) for w in ws]
        hws = [_stack_weight([w[6], w[4], w[5], w[7]]) for w in ws]
        xbs = [_stack_weight([b[2], b[0], b[1], b[3]]) for b in bs]
        hbs = [_stack_weight([b[6], b[4], b[5], b[7]]) for b in bs]

        xs_next = xs
        hy = []
        cy = []
        for layer in six.moves.range(n_layers):

            def _one_directional_loop(di):
                # di=0, forward LSTM
                # di=1, backward LSTM
                h_list = []
                c_list = []
                layer_idx = direction * layer + di
                h = hx[layer_idx]
                c = cx[layer_idx]
                if di == 0:
                    xs_list = xs_next
                else:
                    xs_list = reversed(xs_next)
                for x in xs_list:
                    batch = x.shape[0]
                    if h.shape[0] > batch:
                        h, h_rest = split_axis.split_axis(h, [batch], axis=0)
                        c, c_rest = split_axis.split_axis(c, [batch], axis=0)
                    else:
                        h_rest = None
                        c_rest = None

                    if layer != 0:
                        x = dropout.dropout(x, ratio=dropout_ratio,
                                            train=train)
                    lstm_in = linear.linear(x, xws[layer_idx],
                                            xbs[layer_idx]) + \
                        linear.linear(h, hws[layer_idx], hbs[layer_idx])

                    c_bar, h_bar = lstm.lstm(c, lstm_in)
                    if h_rest is not None:
                        h = concat.concat([h_bar, h_rest], axis=0)
                        c = concat.concat([c_bar, c_rest], axis=0)
                    else:
                        h = h_bar
                        c = c_bar
                    h_list.append(h_bar)
                    c_list.append(c_bar)
                return h, c, h_list, c_list

            h, c, h_forward, c_forward = _one_directional_loop(di=0)
            hy.append(h)
            cy.append(c)

            if use_bi_direction:
                # BiLSTM
                h, c, h_backward, c_backward = _one_directional_loop(di=1)
                hy.append(h)
                cy.append(c)

                h_backward.reverse()
                # concat
                xs_next = [concat.concat([hfi, hbi], axis=1) for (hfi, hbi) in
                           zip(h_forward, h_backward)]
            else:
                # Uni-directional RNN
                xs_next = h_forward

        ys = xs_next
        hy = stack.stack(hy)
        cy = stack.stack(cy)
        return hy, cy, tuple(ys)
コード例 #4
0
def n_step_lstm_base(
        n_layers, dropout_ratio, hx, cx, ws, bs, xs, use_bi_direction,
        **kwargs):
    """Base function for Stack LSTM/BiLSTM functions.

    This function is used at :func:`chainer.functions.n_step_lstm` and
    :func:`chainer.functions.n_step_bilstm`.
    This function's behavior depends on following arguments,
    ``activation`` and ``use_bi_direction``.

    Args:
        n_layers(int): The number of layers.
        dropout_ratio(float): Dropout ratio.
        hx (~chainer.Variable): Variable holding stacked hidden states.
            Its shape is ``(S, B, N)`` where ``S`` is the number of layers and
            is equal to ``n_layers``, ``B`` is the mini-batch size, and ``N``
            is the dimension of the hidden units.
        cx (~chainer.Variable): Variable holding stacked cell states.
            It has the same shape as ``hx``.
        ws (list of list of :class:`~chainer.Variable`): Weight matrices.
            ``ws[i]`` represents the weights for the i-th layer.
            Each ``ws[i]`` is a list containing eight matrices.
            ``ws[i][j]`` corresponds to :math:`W_j` in the equation.
            Only ``ws[0][j]`` where ``0 <= j < 4`` are ``(I, N)``-shape as they
            are multiplied with input variables, where ``I`` is the size of
            the input and ``N`` is the dimension of the hidden units. All
            other matrices are ``(N, N)``-shaped.
        bs (list of list of :class:`~chainer.Variable`): Bias vectors.
            ``bs[i]`` represents the biases for the i-th layer.
            Each ``bs[i]`` is a list containing eight vectors.
            ``bs[i][j]`` corresponds to :math:`b_j` in the equation.
            The shape of each matrix is ``(N,)``.
        xs (list of :class:`~chainer.Variable`):
            A list of :class:`~chainer.Variable`
            holding input values. Each element ``xs[t]`` holds input value
            for time ``t``. Its shape is ``(B_t, I)``, where ``B_t`` is the
            mini-batch size for time ``t``. The sequences must be transposed.
            :func:`~chainer.functions.transpose_sequence` can be used to
            transpose a list of :class:`~chainer.Variable`\\ s each
            representing a sequence.
            When sequences has different lengths, they must be
            sorted in descending order of their lengths before transposing.
            So ``xs`` needs to satisfy
            ``xs[t].shape[0] >= xs[t + 1].shape[0]``.
        use_bi_direction (bool): If ``True``, this function uses Bi-directional
            LSTM.

    Returns:
        tuple: This functions returns a tuple concaining three elements,
        ``hy``, ``cy`` and ``ys``.

            - ``hy`` is an updated hidden states whose shape is the same as
              ``hx``.
            - ``cy`` is an updated cell states whose shape is the same as
              ``cx``.
            - ``ys`` is a list of :class:`~chainer.Variable` . Each element
              ``ys[t]`` holds hidden states of the last layer corresponding
              to an input ``xs[t]``. Its shape is ``(B_t, N)`` where ``B_t`` is
              the mini-batch size for time ``t``. Note that ``B_t`` is the same
              value as ``xs[t]``.

    .. seealso::

       :func:`chainer.functions.n_step_lstm`
       :func:`chainer.functions.n_step_bilstm`

    """

    argument.check_unexpected_kwargs(
        kwargs, train='train argument is not supported anymore. '
        'Use chainer.using_config',
        use_cudnn='use_cudnn argument is not supported anymore. '
        'Use chainer.using_config')
    argument.assert_kwargs_empty(kwargs)

    xp = cuda.get_array_module(hx, hx.data)

    if xp is not numpy and chainer.should_use_cudnn('>=auto', 5000):
        states = get_random_state().create_dropout_states(dropout_ratio)
        lengths = [len(x) for x in xs]
        xs = chainer.functions.concat(xs, axis=0)
        # flatten all input variables
        inputs = tuple(itertools.chain(
            (hx, cx),
            itertools.chain.from_iterable(ws),
            itertools.chain.from_iterable(bs),
            (xs,)))
        if use_bi_direction:
            rnn = NStepBiLSTM
        else:
            rnn = NStepLSTM

        hy, cy, ys = rnn(n_layers, states, lengths)(*inputs)
        sections = numpy.cumsum(lengths[:-1])
        ys = chainer.functions.split_axis(ys, sections, 0)
        return hy, cy, ys

    else:
        direction = 2 if use_bi_direction else 1
        split_size = n_layers * direction
        hx = split_axis.split_axis(hx, split_size, axis=0, force_tuple=True)
        hx = [reshape.reshape(h, h.shape[1:]) for h in hx]
        cx = split_axis.split_axis(cx, split_size, axis=0, force_tuple=True)
        cx = [reshape.reshape(c, c.shape[1:]) for c in cx]

        xws = [_stack_weight([w[2], w[0], w[1], w[3]]) for w in ws]
        hws = [_stack_weight([w[6], w[4], w[5], w[7]]) for w in ws]
        xbs = [_stack_weight([b[2], b[0], b[1], b[3]]) for b in bs]
        hbs = [_stack_weight([b[6], b[4], b[5], b[7]]) for b in bs]

        xs_next = xs
        hy = []
        cy = []
        for layer in six.moves.range(n_layers):

            def _one_directional_loop(di):
                # di=0, forward LSTM
                # di=1, backward LSTM
                h_list = []
                c_list = []
                layer_idx = direction * layer + di
                h = hx[layer_idx]
                c = cx[layer_idx]
                if di == 0:
                    xs_list = xs_next
                else:
                    xs_list = reversed(xs_next)
                for x in xs_list:
                    batch = x.shape[0]
                    if h.shape[0] > batch:
                        h, h_rest = split_axis.split_axis(h, [batch], axis=0)
                        c, c_rest = split_axis.split_axis(c, [batch], axis=0)
                    else:
                        h_rest = None
                        c_rest = None

                    if layer != 0:
                        x = dropout.dropout(x, ratio=dropout_ratio)
                    lstm_in = linear.linear(x, xws[layer_idx],
                                            xbs[layer_idx]) + \
                        linear.linear(h, hws[layer_idx], hbs[layer_idx])

                    c_bar, h_bar = lstm.lstm(c, lstm_in)
                    if h_rest is not None:
                        h = concat.concat([h_bar, h_rest], axis=0)
                        c = concat.concat([c_bar, c_rest], axis=0)
                    else:
                        h = h_bar
                        c = c_bar
                    h_list.append(h_bar)
                    c_list.append(c_bar)
                return h, c, h_list, c_list

            h, c, h_forward, c_forward = _one_directional_loop(di=0)
            hy.append(h)
            cy.append(c)

            if use_bi_direction:
                # BiLSTM
                h, c, h_backward, c_backward = _one_directional_loop(di=1)
                hy.append(h)
                cy.append(c)

                h_backward.reverse()
                # concat
                xs_next = [concat.concat([hfi, hbi], axis=1) for (hfi, hbi) in
                           zip(h_forward, h_backward)]
            else:
                # Uni-directional RNN
                xs_next = h_forward

        ys = xs_next
        hy = stack.stack(hy)
        cy = stack.stack(cy)
        return hy, cy, tuple(ys)
コード例 #5
0
def _stack_weight(ws):
    # TODO(unno): Input of the current LSTM implementaiton is shuffled
    w = stack.stack(ws, axis=1)
    shape = w.shape
    return reshape.reshape(w, (shape[0] * shape[1],) + shape[2:])
コード例 #6
0
ファイル: n_step_gru.py プロジェクト: fukatani/chainer
def n_step_gru_base(n_layers, dropout_ratio, hx, ws, bs, xs,
                    use_bi_direction, **kwargs):
    """n_step_gru_base(n_layers, dropout_ratio, hx, ws, bs, xs, use_bi_direction)

    Base function for Stack GRU/BiGRU functions.

    This function is used at  :func:`chainer.functions.n_step_bigru` and
    :func:`chainer.functions.n_step_gru`.
    This function's behavior depends on argument ``use_bi_direction``.

    .. warning::

       ``train`` and ``use_cudnn`` arguments are not supported anymore since
       v2.
       Instead, use ``chainer.using_config('train', train)`` and
       ``chainer.using_config('use_cudnn', use_cudnn)`` respectively.
       See :func:`chainer.using_config`.

    Args:
        n_layers(int): Number of layers.
        dropout_ratio(float): Dropout ratio.
        hx (chainer.Variable): Variable holding stacked hidden states.
            Its shape is ``(S, B, N)`` where ``S`` is number of layers and is
            equal to ``n_layers``, ``B`` is mini-batch size, and ``N`` is
            dimension of hidden units. Because of bi-direction, the
            first dimension length is ``2S``.
        ws (list of list of chainer.Variable): Weight matrices. ``ws[i]``
            represents weights for i-th layer.
            Each ``ws[i]`` is a list containing six matrices.
            ``ws[i][j]`` is corresponding with ``W_j`` in the equation.
            Only ``ws[0][j]`` where ``0 <= j < 3`` is ``(I, N)`` shape as they
            are multiplied with input variables. All other matrices has
            ``(N, N)`` shape.
        bs (list of list of chainer.Variable): Bias vectors. ``bs[i]``
            represnents biases for i-th layer.
            Each ``bs[i]`` is a list containing six vectors.
            ``bs[i][j]`` is corresponding with ``b_j`` in the equation.
            Shape of each matrix is ``(N,)`` where ``N`` is dimension of
            hidden units.
        xs (list of chainer.Variable): A list of :class:`~chainer.Variable`
            holding input values. Each element ``xs[t]`` holds input value
            for time ``t``. Its shape is ``(B_t, I)``, where ``B_t`` is
            mini-batch size for time ``t``, and ``I`` is size of input units.
            Note that this functions supports variable length sequences.
            When sequneces has different lengths, sort sequences in descending
            order by length, and transpose the sorted sequence.
            :func:`~chainer.functions.transpose_sequence` transpose a list
            of :func:`~chainer.Variable` holding sequence.
            So ``xs`` needs to satisfy
            ``xs[t].shape[0] >= xs[t + 1].shape[0]``.
        activation (str): Activation function name.
            Please select ``tanh`` or ``relu``.
        use_bi_direction (bool): If ``True``, this function uses
            Bi-direction GRU.

    .. seealso::
       :func:`chainer.functions.n_step_rnn`
       :func:`chainer.functions.n_step_birnn`

    """  # NOQA
    argument.check_unexpected_kwargs(
        kwargs, train='train argument is not supported anymore. '
        'Use chainer.using_config',
        use_cudnn='use_cudnn argument is not supported anymore. '
        'Use chainer.using_config')
    argument.assert_kwargs_empty(kwargs)

    xp = cuda.get_array_module(hx, hx.data)

    if xp is not numpy and chainer.should_use_cudnn('>=auto', 5000):
        states = get_random_state().create_dropout_states(dropout_ratio)
        # flatten all input variables
        inputs = tuple(itertools.chain(
            (hx, ),
            itertools.chain.from_iterable(ws),
            itertools.chain.from_iterable(bs),
            xs))
        if use_bi_direction:
            rnn = NStepBiGRU(n_layers, states)
        else:
            rnn = NStepGRU(n_layers, states)

        ret = rnn(*inputs)
        hy, = ret[:1]
        ys = ret[1:]
        return hy, ys

    else:
        direction = 2 if use_bi_direction else 1
        hx = split_axis.split_axis(hx, n_layers * direction, axis=0,
                                   force_tuple=True)
        hx = [reshape.reshape(h, h.shape[1:]) for h in hx]

        xws = [concat.concat([w[0], w[1], w[2]], axis=0) for w in ws]
        hws = [concat.concat([w[3], w[4], w[5]], axis=0) for w in ws]
        xbs = [concat.concat([b[0], b[1], b[2]], axis=0) for b in bs]
        hbs = [concat.concat([b[3], b[4], b[5]], axis=0) for b in bs]

        xs_next = xs
        hy = []
        for layer in six.moves.range(n_layers):

            def _one_directional_loop(di):
                # di=0, forward GRU
                # di=1, backward GRU
                xs_list = xs_next if di == 0 else reversed(xs_next)
                layer_idx = direction * layer + di
                h = hx[layer_idx]
                h_list = []
                for x in xs_list:
                    batch = x.shape[0]
                    if h.shape[0] > batch:
                        h, h_rest = split_axis.split_axis(h, [batch], axis=0)
                    else:
                        h_rest = None

                    if layer > 0:
                        x = dropout.dropout(x, ratio=dropout_ratio)

                    gru_x = linear.linear(x, xws[layer_idx], xbs[layer_idx])
                    gru_h = linear.linear(h, hws[layer_idx], hbs[layer_idx])

                    W_r_x, W_z_x, W_x = split_axis.split_axis(gru_x, 3, axis=1)
                    U_r_h, U_z_h, U_x = split_axis.split_axis(gru_h, 3, axis=1)

                    r = sigmoid.sigmoid(W_r_x + U_r_h)
                    z = sigmoid.sigmoid(W_z_x + U_z_h)
                    h_bar = tanh.tanh(W_x + r * U_x)
                    h_bar = (1 - z) * h_bar + z * h
                    if h_rest is not None:
                        h = concat.concat([h_bar, h_rest], axis=0)
                    else:
                        h = h_bar
                    h_list.append(h_bar)
                return h, h_list

            # Forward GRU
            h, h_forward = _one_directional_loop(di=0)
            hy.append(h)

            if use_bi_direction:
                # Backward GRU
                h, h_backward = _one_directional_loop(di=1)
                h_backward.reverse()
                # Concat
                xs_next = [concat.concat([hfi, hbi], axis=1) for (hfi, hbi) in
                           six.moves.zip(h_forward, h_backward)]
                hy.append(h)
            else:
                # Uni-directional GRU
                xs_next = h_forward

        ys = xs_next
        hy = stack.stack(hy)
        return hy, tuple(ys)
コード例 #7
0
ファイル: n_step_gru.py プロジェクト: junyakc/chainer
def n_step_gru_base(n_layers, dropout_ratio, hx, ws, bs, xs, use_bi_direction,
                    **kwargs):
    """n_step_gru_base(n_layers, dropout_ratio, hx, ws, bs, xs, use_bi_direction)

    Base function for Stack GRU/BiGRU functions.

    This function is used at  :func:`chainer.functions.n_step_bigru` and
    :func:`chainer.functions.n_step_gru`.
    This function's behavior depends on argument ``use_bi_direction``.

    .. warning::

       ``train`` and ``use_cudnn`` arguments are not supported anymore since
       v2.
       Instead, use ``chainer.using_config('train', train)`` and
       ``chainer.using_config('use_cudnn', use_cudnn)`` respectively.
       See :func:`chainer.using_config`.

    Args:
        n_layers(int): Number of layers.
        dropout_ratio(float): Dropout ratio.
        hx (chainer.Variable): Variable holding stacked hidden states.
            Its shape is ``(S, B, N)`` where ``S`` is number of layers and is
            equal to ``n_layers``, ``B`` is mini-batch size, and ``N`` is
            dimension of hidden units. Because of bi-direction, the
            first dimension length is ``2S``.
        ws (list of list of chainer.Variable): Weight matrices. ``ws[i]``
            represents weights for i-th layer.
            Each ``ws[i]`` is a list containing six matrices.
            ``ws[i][j]`` is corresponding with ``W_j`` in the equation.
            Only ``ws[0][j]`` where ``0 <= j < 3`` is ``(I, N)`` shape as they
            are multiplied with input variables. All other matrices has
            ``(N, N)`` shape.
        bs (list of list of chainer.Variable): Bias vectors. ``bs[i]``
            represnents biases for i-th layer.
            Each ``bs[i]`` is a list containing six vectors.
            ``bs[i][j]`` is corresponding with ``b_j`` in the equation.
            Shape of each matrix is ``(N,)`` where ``N`` is dimension of
            hidden units.
        xs (list of chainer.Variable): A list of :class:`~chainer.Variable`
            holding input values. Each element ``xs[t]`` holds input value
            for time ``t``. Its shape is ``(B_t, I)``, where ``B_t`` is
            mini-batch size for time ``t``, and ``I`` is size of input units.
            Note that this functions supports variable length sequences.
            When sequneces has different lengths, sort sequences in descending
            order by length, and transpose the sorted sequence.
            :func:`~chainer.functions.transpose_sequence` transpose a list
            of :func:`~chainer.Variable` holding sequence.
            So ``xs`` needs to satisfy
            ``xs[t].shape[0] >= xs[t + 1].shape[0]``.
        activation (str): Activation function name.
            Please select ``tanh`` or ``relu``.
        use_bi_direction (bool): If ``True``, this function uses
            Bi-direction GRU.

    .. seealso::
       :func:`chainer.functions.n_step_rnn`
       :func:`chainer.functions.n_step_birnn`

    """  # NOQA
    argument.check_unexpected_kwargs(
        kwargs,
        train='train argument is not supported anymore. '
        'Use chainer.using_config',
        use_cudnn='use_cudnn argument is not supported anymore. '
        'Use chainer.using_config')
    argument.assert_kwargs_empty(kwargs)

    xp = cuda.get_array_module(hx, hx.data)

    if xp is not numpy and chainer.should_use_cudnn('>=auto', 5000):
        states = get_random_state().create_dropout_states(dropout_ratio)
        # flatten all input variables
        inputs = tuple(
            itertools.chain((hx, ), itertools.chain.from_iterable(ws),
                            itertools.chain.from_iterable(bs), xs))
        if use_bi_direction:
            rnn = NStepBiGRU(n_layers, states)
        else:
            rnn = NStepGRU(n_layers, states)

        ret = rnn(*inputs)
        hy, = ret[:1]
        ys = ret[1:]
        return hy, ys

    else:
        direction = 2 if use_bi_direction else 1
        hx = split_axis.split_axis(hx,
                                   n_layers * direction,
                                   axis=0,
                                   force_tuple=True)
        hx = [reshape.reshape(h, h.shape[1:]) for h in hx]

        xws = [concat.concat([w[0], w[1], w[2]], axis=0) for w in ws]
        hws = [concat.concat([w[3], w[4], w[5]], axis=0) for w in ws]
        xbs = [concat.concat([b[0], b[1], b[2]], axis=0) for b in bs]
        hbs = [concat.concat([b[3], b[4], b[5]], axis=0) for b in bs]

        xs_next = xs
        hy = []
        for layer in six.moves.range(n_layers):

            def _one_directional_loop(di):
                # di=0, forward GRU
                # di=1, backward GRU
                xs_list = xs_next if di == 0 else reversed(xs_next)
                layer_idx = direction * layer + di
                h = hx[layer_idx]
                h_list = []
                for x in xs_list:
                    batch = x.shape[0]
                    if h.shape[0] > batch:
                        h, h_rest = split_axis.split_axis(h, [batch], axis=0)
                    else:
                        h_rest = None

                    if layer > 0:
                        x = dropout.dropout(x, ratio=dropout_ratio)

                    gru_x = linear.linear(x, xws[layer_idx], xbs[layer_idx])
                    gru_h = linear.linear(h, hws[layer_idx], hbs[layer_idx])

                    W_r_x, W_z_x, W_x = split_axis.split_axis(gru_x, 3, axis=1)
                    U_r_h, U_z_h, U_x = split_axis.split_axis(gru_h, 3, axis=1)

                    r = sigmoid.sigmoid(W_r_x + U_r_h)
                    z = sigmoid.sigmoid(W_z_x + U_z_h)
                    h_bar = tanh.tanh(W_x + r * U_x)
                    h_bar = (1 - z) * h_bar + z * h
                    if h_rest is not None:
                        h = concat.concat([h_bar, h_rest], axis=0)
                    else:
                        h = h_bar
                    h_list.append(h_bar)
                return h, h_list

            # Forward GRU
            h, h_forward = _one_directional_loop(di=0)
            hy.append(h)

            if use_bi_direction:
                # Backward GRU
                h, h_backward = _one_directional_loop(di=1)
                h_backward.reverse()
                # Concat
                xs_next = [
                    concat.concat([hfi, hbi], axis=1)
                    for (hfi, hbi) in six.moves.zip(h_forward, h_backward)
                ]
                hy.append(h)
            else:
                # Uni-directional GRU
                xs_next = h_forward

        ys = xs_next
        hy = stack.stack(hy)
        return hy, tuple(ys)
コード例 #8
0
ファイル: n_step_lstm.py プロジェクト: zerocurve/chainer
def n_step_lstm(n_layers,
                dropout_ratio,
                hx,
                cx,
                ws,
                bs,
                xs,
                train=True,
                use_cudnn=True):
    """Stacked Long Short-Term Memory function for sequence inputs.

    This function calculates stacked LSTM with sequences. This function gets
    an initial hidden state :math:`h_0`, an initial cell state :math:`c_0`,
    an input sequence :math:`x`, weight matrices :math:`W`, and bias vectors
    :math:`b`.
    This function calculates hidden states :math:`h_t` and :math:`c_t` for each
    time :math:`t` from input :math:`x_t`.

    .. math::

       i_t = \sigma(W_0 x_t + W_4 h_{t-1} + b_0 + b_4)
       f_t = \sigma(W_1 x_t + W_5 h_{t-1} + b_1 + b_5)
       o_t = \sigma(W_2 x_t + W_6 h_{t-1} + b_2 + b_6)
       a_t = \tanh(W_3 x_t + W_7 h_{t-1} + b_3 + b_7)
       c_t = f_t \dot c_{t-1} + i_t \dot a_t
       h_t = o_t \dot \tanh(c_t)

    As the function accepts a sequence, it calculates :math:`h_t` for all
    :math:`t` with one call. Eight weight matrices and eight bias vectors are
    required for each layers. So, when :math:`S` layers exists, you need to
    prepare :math:`8S` weigth matrices and :math:`8S` bias vectors.

    If the number of layers ``n_layers`` is greather than :math:`1`, input
    of ``k``-th layer is hidden state ``h_t`` of ``k-1``-th layer.
    Note that all input variables except first layer may have different shape
    from the first layer.

    Args:
        n_layers(int): Number of layers.
        dropout_ratio(float): Dropout ratio.
        hx (chainer.Variable): Variable holding stacked hidden states.
            Its shape is ``(S, B, N)`` where ``S`` is number of layers and is
            equal to ``n_layers``, ``B`` is mini-batch size, and ``N`` is
            dimention of hidden units.
        cx (chainer.Variable): Variable holding stacked cell states.
            It has the same shape as ``hx``.
        ws (list of list of chainer.Variable): Weight matrices. ``ws[i]``
            represents weights for i-th layer.
            Each ``ws[i]`` is a list containing eight matrices.
            ``ws[i][j]`` is corresponding with ``W_j`` in the equation.
            Only ``ws[0][j]`` where ``0 <= j < 4`` is ``(I, N)`` shape as they
            are multiplied with input variables. All other matrices has
            ``(N, N)`` shape.
        bs (list of list of chainer.Variable): Bias vectors. ``bs[i]``
            represnents biases for i-th layer.
            Each ``bs[i]`` is a list containing eight vectors.
            ``bs[i][j]`` is corresponding with ``b_j`` in the equation.
            Shape of each matrix is ``(N,)`` where ``N`` is dimention of
            hidden units.
        xs (list of chainer.Variable): A list of :class:`chainer.Variable`
            holding input values. Each element ``xs[t]`` holds input value
            for time ``t``. Its shape is ``(B_t, I)``, where ``B_t`` is
            mini-batch size for time ``t``, and ``I`` is size of input units.
            Note that this functions supports variable length sequences.
            When sequneces has different lengths, sort sequences in descending
            order by length, and transpose the sorted sequence.
            :func:`~chainer.functions.transpose_sequence` transpose a list
            of :func:`~chainer.Variable` holding sequence.
            So ``xs`` needs to satisfy
            ``xs[t].shape[0] >= xs[t + 1].shape[0]``.
        train (bool): If ``True``, this function executes dropout.
        use_cudnn (bool): If ``True``, this function uses cuDNN if available.

    Returns:
        tuple: This functions returns a tuple concaining three elements,
            ``hy``, ``cy`` and ``ys``.

            - ``hy`` is an updated hidden states whose shape is same as ``hx``.
            - ``cy`` is an updated cell states whose shape is same as ``cx``.
            - ``ys`` is a list of :class:~chainer.Variable. Each element
              ``ys[t]`` holds hidden states of the last layer corresponding
              to an input ``xs[t]``. Its shape is ``(B_t, N)`` where ``B_t`` is
              mini-batch size for time ``t``, and ``N`` is size of hidden
              units. Note that ``B_t`` is the same value as ``xs[t]``.

    .. seealso::

       :func:`chainer.functions.lstm`

    """

    xp = cuda.get_array_module(hx, hx.data)

    if use_cudnn and xp is not numpy and cuda.cudnn_enabled and \
       _cudnn_version >= 5000:
        states = get_random_state().create_dropout_states(dropout_ratio)
        # flatten all input variables
        inputs = tuple(
            itertools.chain((hx, cx), itertools.chain.from_iterable(ws),
                            itertools.chain.from_iterable(bs), xs))
        rnn = NStepLSTM(n_layers, states, train=train)
        ret = rnn(*inputs)
        hy, cy = ret[:2]
        ys = ret[2:]
        return hy, cy, ys

    else:
        hx = split_axis.split_axis(hx, n_layers, axis=0, force_tuple=True)
        hx = [reshape.reshape(h, h.shape[1:]) for h in hx]
        cx = split_axis.split_axis(cx, n_layers, axis=0, force_tuple=True)
        cx = [reshape.reshape(c, c.shape[1:]) for c in cx]

        xws = [_stack_weight([w[2], w[0], w[1], w[3]]) for w in ws]
        hws = [_stack_weight([w[6], w[4], w[5], w[7]]) for w in ws]
        xbs = [_stack_weight([b[2], b[0], b[1], b[3]]) for b in bs]
        hbs = [_stack_weight([b[6], b[4], b[5], b[7]]) for b in bs]

        ys = []
        for x in xs:
            batch = x.shape[0]
            h_next = []
            c_next = []
            for layer in six.moves.range(n_layers):
                h = hx[layer]
                c = cx[layer]
                if h.shape[0] > batch:
                    h, h_rest = split_axis.split_axis(h, [batch], axis=0)
                    c, c_rest = split_axis.split_axis(c, [batch], axis=0)
                else:
                    h_rest = None

                x = dropout.dropout(x, ratio=dropout_ratio, train=train)
                h = dropout.dropout(h, ratio=dropout_ratio, train=train)
                lstm_in = linear.linear(x, xws[layer], xbs[layer]) + \
                    linear.linear(h, hws[layer], hbs[layer])

                c_bar, h_bar = lstm.lstm(c, lstm_in)
                if h_rest is not None:
                    h = concat.concat([h_bar, h_rest], axis=0)
                    c = concat.concat([c_bar, c_rest], axis=0)
                else:
                    h = h_bar
                    c = c_bar
                h_next.append(h)
                c_next.append(c)
                x = h_bar
            hx = h_next
            cx = c_next
            ys.append(x)

        hy = stack.stack(hx)
        cy = stack.stack(cx)
        return hy, cy, tuple(ys)
コード例 #9
0
def n_step_lstm_base(n_layers, dropout_ratio, hx, cx, ws, bs, xs, train,
                     use_cudnn, use_bi_direction):
    """Base function for Stack LSTM/BiLSTM functions.

    This function is used at :func:`chainer.functions.n_step_lstm` and
    :func:`chainer.functions.n_step_bilstm`.
    This function's behavior depends on following arguments,
    ``activation`` and ``use_bi_direction``.

    Args:
        n_layers(int): Number of layers.
        dropout_ratio(float): Dropout ratio.
        hx (chainer.Variable): Variable holding stacked hidden states.
            Its shape is ``(S, B, N)`` where ``S`` is number of layers and is
            equal to ``n_layers``, ``B`` is mini-batch size, and ``N`` is
            dimention of hidden units.
        cx (chainer.Variable): Variable holding stacked cell states.
            It has the same shape as ``hx``.
        ws (list of list of chainer.Variable): Weight matrices. ``ws[i]``
            represents weights for i-th layer.
            Each ``ws[i]`` is a list containing eight matrices.
            ``ws[i][j]`` is corresponding with ``W_j`` in the equation.
            Only ``ws[0][j]`` where ``0 <= j < 4`` is ``(I, N)`` shape as they
            are multiplied with input variables. All other matrices has
            ``(N, N)`` shape.
        bs (list of list of chainer.Variable): Bias vectors. ``bs[i]``
            represnents biases for i-th layer.
            Each ``bs[i]`` is a list containing eight vectors.
            ``bs[i][j]`` is corresponding with ``b_j`` in the equation.
            Shape of each matrix is ``(N,)`` where ``N`` is dimention of
            hidden units.
        xs (list of chainer.Variable): A list of :class:`~chainer.Variable`
            holding input values. Each element ``xs[t]`` holds input value
            for time ``t``. Its shape is ``(B_t, I)``, where ``B_t`` is
            mini-batch size for time ``t``, and ``I`` is size of input units.
            Note that this functions supports variable length sequences.
            When sequneces has different lengths, sort sequences in descending
            order by length, and transpose the sorted sequence.
            :func:`~chainer.functions.transpose_sequence` transpose a list
            of :func:`~chainer.Variable` holding sequence.
            So ``xs`` needs to satisfy
            ``xs[t].shape[0] >= xs[t + 1].shape[0]``.
        train (bool): If ``True``, this function executes dropout.
        use_cudnn (bool): If ``True``, this function uses cuDNN if available.
        use_bi_direction (bool): If ``True``, this function uses Bi-directional
            LSTM.

    Returns:
        tuple: This functions returns a tuple concaining three elements,
            ``hy``, ``cy`` and ``ys``.
            - ``hy`` is an updated hidden states whose shape is same as ``hx``.
            - ``cy`` is an updated cell states whose shape is same as ``cx``.
            - ``ys`` is a list of :class:`~chainer.Variable` . Each element
              ``ys[t]`` holds hidden states of the last layer corresponding
              to an input ``xs[t]``. Its shape is ``(B_t, N)`` where ``B_t`` is
              mini-batch size for time ``t``, and ``N`` is size of hidden
              units. Note that ``B_t`` is the same value as ``xs[t]``.

    .. seealso::

       :func:`chainer.functions.n_step_lstm`
       :func:`chainer.functions.n_step_bilstm`

    """

    xp = cuda.get_array_module(hx, hx.data)

    if use_cudnn and xp is not numpy and cuda.cudnn_enabled and \
       _cudnn_version >= 5000:
        states = get_random_state().create_dropout_states(dropout_ratio)
        # flatten all input variables
        inputs = tuple(
            itertools.chain((hx, cx), itertools.chain.from_iterable(ws),
                            itertools.chain.from_iterable(bs), xs))
        if use_bi_direction:
            rnn = NStepBiLSTM(n_layers, states, train=train)
        else:
            rnn = NStepLSTM(n_layers, states, train=train)

        ret = rnn(*inputs)
        hy, cy = ret[:2]
        ys = ret[2:]
        return hy, cy, ys

    else:
        direction = 2 if use_bi_direction else 1
        split_size = n_layers * direction
        hx = split_axis.split_axis(hx, split_size, axis=0, force_tuple=True)
        hx = [reshape.reshape(h, h.shape[1:]) for h in hx]
        cx = split_axis.split_axis(cx, split_size, axis=0, force_tuple=True)
        cx = [reshape.reshape(c, c.shape[1:]) for c in cx]

        xws = [_stack_weight([w[2], w[0], w[1], w[3]]) for w in ws]
        hws = [_stack_weight([w[6], w[4], w[5], w[7]]) for w in ws]
        xbs = [_stack_weight([b[2], b[0], b[1], b[3]]) for b in bs]
        hbs = [_stack_weight([b[6], b[4], b[5], b[7]]) for b in bs]

        xs_next = xs
        hy = []
        cy = []
        for layer in six.moves.range(n_layers):

            def _one_directional_loop(di):
                # di=0, forward LSTM
                # di=1, backward LSTM
                h_list = []
                c_list = []
                layer_idx = direction * layer + di
                h = hx[layer_idx]
                c = cx[layer_idx]
                if di == 0:
                    xs_list = xs_next
                else:
                    xs_list = reversed(xs_next)
                for x in xs_list:
                    batch = x.shape[0]
                    if h.shape[0] > batch:
                        h, h_rest = split_axis.split_axis(h, [batch], axis=0)
                        c, c_rest = split_axis.split_axis(c, [batch], axis=0)
                    else:
                        h_rest = None
                        c_rest = None

                    if layer != 0:
                        x = dropout.dropout(x,
                                            ratio=dropout_ratio,
                                            train=train)
                    lstm_in = linear.linear(x, xws[layer_idx],
                                            xbs[layer_idx]) + \
                        linear.linear(h, hws[layer_idx], hbs[layer_idx])

                    c_bar, h_bar = lstm.lstm(c, lstm_in)
                    if h_rest is not None:
                        h = concat.concat([h_bar, h_rest], axis=0)
                        c = concat.concat([c_bar, c_rest], axis=0)
                    else:
                        h = h_bar
                        c = c_bar
                    h_list.append(h_bar)
                    c_list.append(c_bar)
                return h, c, h_list, c_list

            h, c, h_forward, c_forward = _one_directional_loop(di=0)
            hy.append(h)
            cy.append(c)

            if use_bi_direction:
                # BiLSTM
                h, c, h_backward, c_backward = _one_directional_loop(di=1)
                hy.append(h)
                cy.append(c)

                h_backward.reverse()
                # concat
                xs_next = [
                    concat.concat([hfi, hbi], axis=1)
                    for (hfi, hbi) in zip(h_forward, h_backward)
                ]
            else:
                # Uni-directional RNN
                xs_next = h_forward

        ys = xs_next
        hy = stack.stack(hy)
        cy = stack.stack(cy)
        return hy, cy, tuple(ys)
コード例 #10
0
ファイル: n_step_lstm.py プロジェクト: coporlock/chainer
def _stack_weight(ws):
    # TODO(unno): Input of the current LSTM implementaiton is shuffled
    w = stack.stack(ws, axis=1)
    shape = w.shape
    return reshape.reshape(w, (shape[0] * shape[1],) + shape[2:])
コード例 #11
0
def n_step_rnn_base(n_layers, dropout_ratio, hx, ws, bs, xs, activation,
                    use_bi_direction, **kwargs):
    """n_step_rnn_base(n_layers, dropout_ratio, hx, ws, bs, xs, activation, use_bi_direction)

    Base function for Stack RNN/BiRNN functions.

    This function is used at  :func:`chainer.functions.n_step_birnn` and
    :func:`chainer.functions.n_step_rnn`.
    This function's behavior depends on following arguments,
    ``activation`` and ``use_bi_direction``.

    .. warning::

       ``train`` and ``use_cudnn`` arguments are not supported anymore since
       v2.
       Instead, use ``chainer.using_config('train', train)`` and
       ``chainer.using_config('use_cudnn', use_cudnn)`` respectively.
       See :func:`chainer.using_config`.

    Args:
        n_layers(int): Number of layers.
        dropout_ratio(float): Dropout ratio.
        hx (chainer.Variable): Variable holding stacked hidden states.
            Its shape is ``(S, B, N)`` where ``S`` is number of layers and is
            equal to ``n_layers``, ``B`` is mini-batch size, and ``N`` is
            dimention of hidden units.
        ws (list of list of chainer.Variable): Weight matrices. ``ws[i]``
            represents weights for i-th layer.
            Each ``ws[i]`` is a list containing two matrices.
            ``ws[i][j]`` is corresponding with ``W_j`` in the equation.
            Only ``ws[0][j]`` where ``0 <= j < 1`` is ``(I, N)`` shape as they
            are multiplied with input variables. All other matrices has
            ``(N, N)`` shape.
        bs (list of list of chainer.Variable): Bias vectors. ``bs[i]``
            represnents biases for i-th layer.
            Each ``bs[i]`` is a list containing two vectors.
            ``bs[i][j]`` is corresponding with ``b_j`` in the equation.
            Shape of each matrix is ``(N,)`` where ``N`` is dimention of
            hidden units.
        xs (list of chainer.Variable): A list of :class:`~chainer.Variable`
            holding input values. Each element ``xs[t]`` holds input value
            for time ``t``. Its shape is ``(B_t, I)``, where ``B_t`` is
            mini-batch size for time ``t``, and ``I`` is size of input units.
            Note that this functions supports variable length sequences.
            When sequneces has different lengths, sort sequences in descending
            order by length, and transpose the sorted sequence.
            :func:`~chainer.functions.transpose_sequence` transpose a list
            of :func:`~chainer.Variable` holding sequence.
            So ``xs`` needs to satisfy
            ``xs[t].shape[0] >= xs[t + 1].shape[0]``.
        activation (str): Activation function name.
            Please select ``tanh`` or ``relu``.
        use_bi_direction (bool): If ``True``, this function uses
            Bi-directional RNN.

    Returns:
        tuple: This functions returns a tuple concaining three elements,
            ``hy`` and ``ys``.

            - ``hy`` is an updated hidden states whose shape is same as ``hx``.
            - ``ys`` is a list of :class:`~chainer.Variable` . Each element
              ``ys[t]`` holds hidden states of the last layer corresponding
              to an input ``xs[t]``. Its shape is ``(B_t, N)`` where ``B_t``
              is mini-batch size for time ``t``, and ``N`` is size of hidden
              units. Note that ``B_t`` is the same value as ``xs[t]``.

    .. seealso::
       :func:`chainer.functions.n_step_rnn`
       :func:`chainer.functions.n_step_birnn`

    """  # NOQA

    argument.check_unexpected_kwargs(
        kwargs,
        train='train argument is not supported anymore. '
        'Use chainer.using_config',
        use_cudnn='use_cudnn argument is not supported anymore. '
        'Use chainer.using_config')
    argument.assert_kwargs_empty(kwargs)

    activation_list = ['tanh', 'relu']
    if activation not in activation_list:
        candidate = ','.join(activation_list)
        raise ValueError('Invalid activation: "%s". Please select from [%s]' %
                         (activation, candidate))

    xp = cuda.get_array_module(hx)

    if xp is not numpy and chainer.should_use_cudnn('>=auto', 5000):
        states = get_random_state().create_dropout_states(dropout_ratio)
        # flatten all input variables
        inputs = tuple(
            itertools.chain((hx, ), itertools.chain.from_iterable(ws),
                            itertools.chain.from_iterable(bs), xs))
        if use_bi_direction:
            # Bi-directional RNN
            if activation == 'tanh':
                rnn = NStepBiRNNTanh(n_layers, states)
            elif activation == 'relu':
                rnn = NStepBiRNNReLU(n_layers, states)
        else:
            # Uni-directional RNN
            if activation == 'tanh':
                rnn = NStepRNNTanh(n_layers, states)
            elif activation == 'relu':
                rnn = NStepRNNReLU(n_layers, states)

        ret = rnn(*inputs)
        hy, = ret[:1]
        ys = ret[1:]
        return hy, ys

    else:

        direction = 2 if use_bi_direction else 1
        hx = split_axis.split_axis(hx,
                                   n_layers * direction,
                                   axis=0,
                                   force_tuple=True)
        hx = [reshape.reshape(h, h.shape[1:]) for h in hx]

        xws = [_stack_weight([w[0]]) for w in ws]
        hws = [_stack_weight([w[1]]) for w in ws]
        xbs = [_stack_weight([b[0]]) for b in bs]
        hbs = [_stack_weight([b[1]]) for b in bs]

        xs_next = xs
        hy = []
        for layer in six.moves.range(n_layers):

            def _one_directional_loop(di):
                # di=0, forward RNN
                # di=1, backward RNN
                xs_list = xs_next if di == 0 else reversed(xs_next)
                layer_idx = direction * layer + di
                h = hx[layer_idx]
                h_list = []
                for x in xs_list:
                    batch = x.shape[0]
                    if h.shape[0] > batch:
                        h, h_rest = split_axis.split_axis(h, [batch], axis=0)
                    else:
                        h_rest = None

                    if layer > 0:
                        x = dropout.dropout(x, ratio=dropout_ratio)

                    rnn_in = (
                        linear.linear(x, xws[layer_idx], xbs[layer_idx]) +
                        linear.linear(h, hws[layer_idx], hbs[layer_idx]))
                    if activation == 'tanh':
                        h_bar = tanh.tanh(rnn_in)
                    elif activation == 'relu':
                        h_bar = relu.relu(rnn_in)

                    if h_rest is not None:
                        h = concat.concat([h_bar, h_rest], axis=0)
                    else:
                        h = h_bar
                    h_list.append(h_bar)
                return h, h_list

            # Forward RNN
            h, h_forward = _one_directional_loop(di=0)
            hy.append(h)

            if use_bi_direction:
                # Backward RNN
                h, h_backward = _one_directional_loop(di=1)
                h_backward.reverse()
                # Concat
                xs_next = [
                    concat.concat([hfi, hbi], axis=1)
                    for (hfi, hbi) in six.moves.zip(h_forward, h_backward)
                ]
                hy.append(h)
            else:
                # Uni-directional RNN
                xs_next = h_forward

        ys = xs_next
        hy = stack.stack(hy)
        return hy, tuple(ys)
コード例 #12
0
def fixed_length_n_step_lstm(
    n_layers,
    dropout_ratio,
    hx,
    cx,
    ws,
    bs,
    xs,
    train=True,
):

    xp = cuda.get_array_module(hx, hx.data)

    if xp is not numpy and cuda.cudnn_enabled and _cudnn_version >= 5000:
        states = get_random_state().create_dropout_states(dropout_ratio)
        # flatten all input variables
        inputs = tuple(
            itertools.chain((hx, cx), itertools.chain.from_iterable(ws),
                            itertools.chain.from_iterable(bs), (xs, )))
        rnn = FixedLengthNStepLSTMFunction(n_layers, states, train=train)
        ret = rnn(*inputs)
        hy, cy, ys = ret
        _, batch_size, dim = hy.shape
        ys_reshape = F.reshape(ys,
                               (-1, batch_size, dim))  # (length, batch, dim)
        return hy, cy, ys_reshape

    else:
        hx = split_axis.split_axis(hx, n_layers, axis=0, force_tuple=True)
        hx = [reshape.reshape(h, h.shape[1:]) for h in hx]
        cx = split_axis.split_axis(cx, n_layers, axis=0, force_tuple=True)
        cx = [reshape.reshape(c, c.shape[1:]) for c in cx]

        xws = [_stack_weight([w[2], w[0], w[1], w[3]]) for w in ws]
        hws = [_stack_weight([w[6], w[4], w[5], w[7]]) for w in ws]
        xbs = [_stack_weight([b[2], b[0], b[1], b[3]]) for b in bs]
        hbs = [_stack_weight([b[6], b[4], b[5], b[7]]) for b in bs]

        ys = []
        for x in xs:
            batch = x.shape[0]
            h_next = []
            c_next = []
            for layer in six.moves.range(n_layers):
                h = hx[layer]
                c = cx[layer]
                if h.shape[0] > batch:
                    h, h_rest = split_axis.split_axis(h, [batch], axis=0)
                    c, c_rest = split_axis.split_axis(c, [batch], axis=0)
                else:
                    h_rest = None

                x = dropout.dropout(x, ratio=dropout_ratio)
                h = dropout.dropout(h, ratio=dropout_ratio)
                lstm_in = linear.linear(x, xws[layer], xbs[layer]) + \
                          linear.linear(h, hws[layer], hbs[layer])

                c_bar, h_bar = lstm.lstm(c, lstm_in)
                if h_rest is not None:
                    h = concat.concat([h_bar, h_rest], axis=0)
                    c = concat.concat([c_bar, c_rest], axis=0)
                else:
                    h = h_bar
                    c = c_bar
                h_next.append(h)
                c_next.append(c)
                x = h_bar
            hx = h_next
            cx = c_next
            ys.append(x)

        hy = stack.stack(hx)
        cy = stack.stack(cx)
        #return hy, cy, tuple(ys)
        ys_concat = F.concat(ys, axis=0)
        ys_reshape = F.reshape(
            ys_concat,
            (-1, ys[0].shape[0], ys[0].shape[1]))  # (length, batch, dim)

        return hy, cy, ys_reshape
コード例 #13
0
ファイル: n_step_rnn.py プロジェクト: kiyomaro927/chainer
def n_step_rnn_base(n_layers, dropout_ratio, hx, ws, bs, xs,
                    activation, use_bi_direction, **kwargs):
    """n_step_rnn_base(n_layers, dropout_ratio, hx, ws, bs, xs, activation, use_bi_direction)

    Base function for Stack RNN/BiRNN functions.

    This function is used at  :func:`chainer.functions.n_step_birnn` and
    :func:`chainer.functions.n_step_rnn`.
    This function's behavior depends on following arguments,
    ``activation`` and ``use_bi_direction``.

    .. warning::

       ``train`` and ``use_cudnn`` arguments are not supported anymore since
       v2.
       Instead, use ``chainer.using_config('train', train)`` and
       ``chainer.using_config('use_cudnn', use_cudnn)`` respectively.
       See :func:`chainer.using_config`.

    Args:
        n_layers(int): Number of layers.
        dropout_ratio(float): Dropout ratio.
        hx (chainer.Variable): Variable holding stacked hidden states.
            Its shape is ``(S, B, N)`` where ``S`` is number of layers and is
            equal to ``n_layers``, ``B`` is mini-batch size, and ``N`` is
            dimention of hidden units.
        ws (list of list of chainer.Variable): Weight matrices. ``ws[i]``
            represents weights for i-th layer.
            Each ``ws[i]`` is a list containing two matrices.
            ``ws[i][j]`` is corresponding with ``W_j`` in the equation.
            Only ``ws[0][j]`` where ``0 <= j < 1`` is ``(I, N)`` shape as they
            are multiplied with input variables. All other matrices has
            ``(N, N)`` shape.
        bs (list of list of chainer.Variable): Bias vectors. ``bs[i]``
            represnents biases for i-th layer.
            Each ``bs[i]`` is a list containing two vectors.
            ``bs[i][j]`` is corresponding with ``b_j`` in the equation.
            Shape of each matrix is ``(N,)`` where ``N`` is dimention of
            hidden units.
        xs (list of chainer.Variable): A list of :class:`~chainer.Variable`
            holding input values. Each element ``xs[t]`` holds input value
            for time ``t``. Its shape is ``(B_t, I)``, where ``B_t`` is
            mini-batch size for time ``t``, and ``I`` is size of input units.
            Note that this functions supports variable length sequences.
            When sequneces has different lengths, sort sequences in descending
            order by length, and transpose the sorted sequence.
            :func:`~chainer.functions.transpose_sequence` transpose a list
            of :func:`~chainer.Variable` holding sequence.
            So ``xs`` needs to satisfy
            ``xs[t].shape[0] >= xs[t + 1].shape[0]``.
        activation (str): Activation function name.
            Please select ``tanh`` or ``relu``.
        use_bi_direction (bool): If ``True``, this function uses
            Bi-directional RNN.

    Returns:
        tuple: This functions returns a tuple concaining three elements,
            ``hy`` and ``ys``.

            - ``hy`` is an updated hidden states whose shape is same as ``hx``.
            - ``ys`` is a list of :class:`~chainer.Variable` . Each element
              ``ys[t]`` holds hidden states of the last layer corresponding
              to an input ``xs[t]``. Its shape is ``(B_t, N)`` where ``B_t``
              is mini-batch size for time ``t``, and ``N`` is size of hidden
              units. Note that ``B_t`` is the same value as ``xs[t]``.

    .. seealso::
       :func:`chainer.functions.n_step_rnn`
       :func:`chainer.functions.n_step_birnn`

    """  # NOQA

    argument.check_unexpected_kwargs(
        kwargs, train='train argument is not supported anymore. '
        'Use chainer.using_config',
        use_cudnn='use_cudnn argument is not supported anymore. '
        'Use chainer.using_config')
    argument.assert_kwargs_empty(kwargs)

    activation_list = ['tanh', 'relu']
    if activation not in activation_list:
        candidate = ','.join(activation_list)
        raise ValueError('Invalid activation: "%s". Please select from [%s]'
                         % (activation, candidate))

    xp = cuda.get_array_module(hx)

    if xp is not numpy and chainer.should_use_cudnn('>=auto', 5000):
        states = get_random_state().create_dropout_states(dropout_ratio)
        # flatten all input variables
        inputs = tuple(itertools.chain(
            (hx, ),
            itertools.chain.from_iterable(ws),
            itertools.chain.from_iterable(bs),
            xs))
        if use_bi_direction:
            # Bi-directional RNN
            if activation == 'tanh':
                rnn = NStepBiRNNTanh(n_layers, states)
            elif activation == 'relu':
                rnn = NStepBiRNNReLU(n_layers, states)
        else:
            # Uni-directional RNN
            if activation == 'tanh':
                rnn = NStepRNNTanh(n_layers, states)
            elif activation == 'relu':
                rnn = NStepRNNReLU(n_layers, states)

        ret = rnn(*inputs)
        hy, = ret[:1]
        ys = ret[1:]
        return hy, ys

    else:

        direction = 2 if use_bi_direction else 1
        hx = split_axis.split_axis(hx, n_layers * direction, axis=0,
                                   force_tuple=True)
        hx = [reshape.reshape(h, h.shape[1:]) for h in hx]

        xws = [_stack_weight([w[0]]) for w in ws]
        hws = [_stack_weight([w[1]]) for w in ws]
        xbs = [_stack_weight([b[0]]) for b in bs]
        hbs = [_stack_weight([b[1]]) for b in bs]

        xs_next = xs
        hy = []
        for layer in six.moves.range(n_layers):

            def _one_directional_loop(di):
                # di=0, forward RNN
                # di=1, backward RNN
                xs_list = xs_next if di == 0 else reversed(xs_next)
                layer_idx = direction * layer + di
                h = hx[layer_idx]
                h_list = []
                for x in xs_list:
                    batch = x.shape[0]
                    if h.shape[0] > batch:
                        h, h_rest = split_axis.split_axis(h, [batch], axis=0)
                    else:
                        h_rest = None

                    if layer > 0:
                        x = dropout.dropout(x, ratio=dropout_ratio)

                    rnn_in = (linear.linear(x, xws[layer_idx],
                                            xbs[layer_idx]) +
                              linear.linear(h, hws[layer_idx], hbs[layer_idx]))
                    if activation == 'tanh':
                        h_bar = tanh.tanh(rnn_in)
                    elif activation == 'relu':
                        h_bar = relu.relu(rnn_in)

                    if h_rest is not None:
                        h = concat.concat([h_bar, h_rest], axis=0)
                    else:
                        h = h_bar
                    h_list.append(h_bar)
                return h, h_list

            # Forward RNN
            h, h_forward = _one_directional_loop(di=0)
            hy.append(h)

            if use_bi_direction:
                # Backward RNN
                h, h_backward = _one_directional_loop(di=1)
                h_backward.reverse()
                # Concat
                xs_next = [concat.concat([hfi, hbi], axis=1) for (hfi, hbi) in
                           six.moves.zip(h_forward, h_backward)]
                hy.append(h)
            else:
                # Uni-directional RNN
                xs_next = h_forward

        ys = xs_next
        hy = stack.stack(hy)
        return hy, tuple(ys)
コード例 #14
0
ファイル: multivariate_normal.py プロジェクト: mitmul/chainer
def _batch_triangular_inv(x, lower=True):
    n = len(x)
    y = []
    for i in range(n):
        y.append(_triangular_inv(x[i]))
    return stack.stack(y)
コード例 #15
0
def _batch_triangular_inv(x, lower=True):
    n = len(x)
    y = []
    for i in range(n):
        y.append(_triangular_inv(x[i]))
    return stack.stack(y)
コード例 #16
0
 def backward(self, indexes, grad_outputs):
     grad_outputs = [
         self._xp.zeros(self._shape, dtype=self._dtype)
         if g is None else g for g in grad_outputs]
     return stack.stack(grad_outputs, self.axis),
コード例 #17
0
ファイル: n_step_lstm.py プロジェクト: coporlock/chainer
def n_step_lstm(
        n_layers, dropout_ratio, hx, cx, ws, bs, xs, train=True,
        use_cudnn=True):
    """Stacked Long Short-Term Memory function for sequence inputs.

    This function calculates stacked LSTM with sequences. This function gets
    an initial hidden state :math:`h_0`, an initial cell state :math:`c_0`,
    an input sequence :math:`x`, weight matrices :math:`W`, and bias vectors
    :math:`b`.
    This function calculates hidden states :math:`h_t` and :math:`c_t` for each
    time :math:`t` from input :math:`x_t`.

    .. math::

       i_t &= \\sigma(W_0 x_t + W_4 h_{t-1} + b_0 + b_4) \\\\
       f_t &= \\sigma(W_1 x_t + W_5 h_{t-1} + b_1 + b_5) \\\\
       o_t &= \\sigma(W_2 x_t + W_6 h_{t-1} + b_2 + b_6) \\\\
       a_t &= \\tanh(W_3 x_t + W_7 h_{t-1} + b_3 + b_7) \\\\
       c_t &= f_t \\dot c_{t-1} + i_t \\dot a_t \\\\
       h_t &= o_t \\dot \\tanh(c_t)

    As the function accepts a sequence, it calculates :math:`h_t` for all
    :math:`t` with one call. Eight weight matrices and eight bias vectors are
    required for each layers. So, when :math:`S` layers exists, you need to
    prepare :math:`8S` weigth matrices and :math:`8S` bias vectors.

    If the number of layers ``n_layers`` is greather than :math:`1`, input
    of ``k``-th layer is hidden state ``h_t`` of ``k-1``-th layer.
    Note that all input variables except first layer may have different shape
    from the first layer.

    Args:
        n_layers(int): Number of layers.
        dropout_ratio(float): Dropout ratio.
        hx (chainer.Variable): Variable holding stacked hidden states.
            Its shape is ``(S, B, N)`` where ``S`` is number of layers and is
            equal to ``n_layers``, ``B`` is mini-batch size, and ``N`` is
            dimention of hidden units.
        cx (chainer.Variable): Variable holding stacked cell states.
            It has the same shape as ``hx``.
        ws (list of list of chainer.Variable): Weight matrices. ``ws[i]``
            represents weights for i-th layer.
            Each ``ws[i]`` is a list containing eight matrices.
            ``ws[i][j]`` is corresponding with ``W_j`` in the equation.
            Only ``ws[0][j]`` where ``0 <= j < 4`` is ``(I, N)`` shape as they
            are multiplied with input variables. All other matrices has
            ``(N, N)`` shape.
        bs (list of list of chainer.Variable): Bias vectors. ``bs[i]``
            represnents biases for i-th layer.
            Each ``bs[i]`` is a list containing eight vectors.
            ``bs[i][j]`` is corresponding with ``b_j`` in the equation.
            Shape of each matrix is ``(N,)`` where ``N`` is dimention of
            hidden units.
        xs (list of chainer.Variable): A list of :class:`~chainer.Variable`
            holding input values. Each element ``xs[t]`` holds input value
            for time ``t``. Its shape is ``(B_t, I)``, where ``B_t`` is
            mini-batch size for time ``t``, and ``I`` is size of input units.
            Note that this functions supports variable length sequences.
            When sequneces has different lengths, sort sequences in descending
            order by length, and transpose the sorted sequence.
            :func:`~chainer.functions.transpose_sequence` transpose a list
            of :func:`~chainer.Variable` holding sequence.
            So ``xs`` needs to satisfy
            ``xs[t].shape[0] >= xs[t + 1].shape[0]``.
        train (bool): If ``True``, this function executes dropout.
        use_cudnn (bool): If ``True``, this function uses cuDNN if available.

    Returns:
        tuple: This functions returns a tuple concaining three elements,
            ``hy``, ``cy`` and ``ys``.

            - ``hy`` is an updated hidden states whose shape is same as ``hx``.
            - ``cy`` is an updated cell states whose shape is same as ``cx``.
            - ``ys`` is a list of :class:`~chainer.Variable` . Each element
              ``ys[t]`` holds hidden states of the last layer corresponding
              to an input ``xs[t]``. Its shape is ``(B_t, N)`` where ``B_t`` is
              mini-batch size for time ``t``, and ``N`` is size of hidden
              units. Note that ``B_t`` is the same value as ``xs[t]``.

    .. seealso::

       :func:`chainer.functions.lstm`

    """

    xp = cuda.get_array_module(hx, hx.data)

    if use_cudnn and xp is not numpy and cuda.cudnn_enabled and \
       _cudnn_version >= 5000:
        states = get_random_state().create_dropout_states(dropout_ratio)
        # flatten all input variables
        inputs = tuple(itertools.chain(
            (hx, cx),
            itertools.chain.from_iterable(ws),
            itertools.chain.from_iterable(bs),
            xs))
        rnn = NStepLSTM(n_layers, states, train=train)
        ret = rnn(*inputs)
        hy, cy = ret[:2]
        ys = ret[2:]
        return hy, cy, ys

    else:
        hx = split_axis.split_axis(hx, n_layers, axis=0, force_tuple=True)
        hx = [reshape.reshape(h, h.shape[1:]) for h in hx]
        cx = split_axis.split_axis(cx, n_layers, axis=0, force_tuple=True)
        cx = [reshape.reshape(c, c.shape[1:]) for c in cx]

        xws = [_stack_weight([w[2], w[0], w[1], w[3]]) for w in ws]
        hws = [_stack_weight([w[6], w[4], w[5], w[7]]) for w in ws]
        xbs = [_stack_weight([b[2], b[0], b[1], b[3]]) for b in bs]
        hbs = [_stack_weight([b[6], b[4], b[5], b[7]]) for b in bs]

        ys = []
        for x in xs:
            batch = x.shape[0]
            h_next = []
            c_next = []
            for layer in six.moves.range(n_layers):
                h = hx[layer]
                c = cx[layer]
                if h.shape[0] > batch:
                    h, h_rest = split_axis.split_axis(h, [batch], axis=0)
                    c, c_rest = split_axis.split_axis(c, [batch], axis=0)
                else:
                    h_rest = None

                x = dropout.dropout(x, ratio=dropout_ratio, train=train)
                h = dropout.dropout(h, ratio=dropout_ratio, train=train)
                lstm_in = linear.linear(x, xws[layer], xbs[layer]) + \
                    linear.linear(h, hws[layer], hbs[layer])

                c_bar, h_bar = lstm.lstm(c, lstm_in)
                if h_rest is not None:
                    h = concat.concat([h_bar, h_rest], axis=0)
                    c = concat.concat([c_bar, c_rest], axis=0)
                else:
                    h = h_bar
                    c = c_bar
                h_next.append(h)
                c_next.append(c)
                x = h_bar
            hx = h_next
            cx = c_next
            ys.append(x)

        hy = stack.stack(hx)
        cy = stack.stack(cx)
        return hy, cy, tuple(ys)