コード例 #1
0
    def __call__(self, fp, y):
        mean_activation = F.mean(fp, axis=0)
        rho = 0.01
        zero_array = chainer.Variable(
            numpy.zeros(mean_activation.shape, dtype=numpy.float32))
        small_array = zero_array + 0.001

        cond = (mean_activation.data != 0)
        cond = chainer.Variable(cond)
        mean_activation = F.where(cond, mean_activation, small_array)

        self.kl_div = rho * F.sum(
            F.where(
                cond,
                self.p * F.log(self.p / mean_activation) +
                (1 - self.p) * F.log(
                    (1 - self.p) / (1 - mean_activation)), zero_array))
        # sampling z
        eps = numpy.random.uniform(0.0, 1.0,
                                   fp.data.shape).astype(numpy.float32)
        eps = chainer.Variable(eps)

        if self.train == True:
            z = self.logistic_func(fp - eps)
            #z = fp
        else:
            z = fp
        h = F.relu(self.l1(z))
        h = F.relu(self.l2(h))
        h = self.l3(h)
        self.rec_loss = F.sigmoid_cross_entropy(h, y)
        self.accuracy = F.binary_accuracy(h, y)
        self.loss = self.rec_loss + self.kl_div
        return self.loss, self.accuracy
コード例 #2
0
    def __call__(self, xs, labels):  # B, T, F, 2048, labels: B, T, F, 12
        xs = F.transpose(xs, (0, 2, 1, 3))  # B, F, T, 2048
        orig_labels = labels
        labels = F.transpose(labels, (0, 2, 1, 3))  # B, F, T, 12
        mini_batch, frame_node, T, _ = xs.shape
        xs = xs.reshape(xs.shape[0] * xs.shape[1], xs.shape[2], xs.shape[3])
        labels = labels.reshape(labels.shape[0] * labels.shape[1],
                                labels.shape[2], labels.shape[3])
        xs = list(F.separate(xs, axis=0))  # list of T, 2048
        labels = list(F.separate(labels, axis=0))  # list of T, 12
        output = F.stack(self.label_dep_rnn(xs, labels))  # B * F, T, 12
        output = output.reshape(mini_batch, frame_node, T, -1)
        output = F.transpose(output, (0, 2, 1, 3))  # B, T, F, D
        output = output.reshape(-1, self.class_num)  # B * T * F, 12
        orig_labels = orig_labels.reshape(-1, self.class_num)
        assert output.shape == orig_labels.shape
        pick_index, accuracy_pick_index = self.get_loss_index(
            output, orig_labels)
        loss = F.sigmoid_cross_entropy(
            output[list(pick_index[0]),
                   list(pick_index[1])], orig_labels[list(pick_index[0]),
                                                     list(pick_index[1])])
        accuracy = F.binary_accuracy(
            output[list(accuracy_pick_index[0]),
                   list(accuracy_pick_index[1])], orig_labels[[
                       list(accuracy_pick_index[0]),
                       list(accuracy_pick_index[1])
                   ]])

        return loss, accuracy
コード例 #3
0
 def __call__(self, x, y):
     h = F.relu(self.l1(x))
     h = F.relu(self.l2(h))
     h = self.l3(h)
     self.loss = F.sigmoid_cross_entropy(h, y)
     self.accuracy = F.binary_accuracy(h, y)
     return self.loss, self.accuracy
コード例 #4
0
ファイル: integrateMV.py プロジェクト: Njk-901aru/practice
 def __call__(self, ecfp, sequences, n2vc, n2vp, interactions):
     z = self.cos_similarity(ecfp, sequences, n2vc, n2vp)
     Z = self.fc6(z)
     loss = F.sigmoid_cross_entropy(Z, interactions)
     accuracy = F.binary_accuracy(Z, interactions)
     report({'loss': loss, 'accuracy': accuracy}, self)
     return loss
コード例 #5
0
ファイル: CNNmodel.py プロジェクト: oAzv/GCFM
    def __call__(self, x, t):
        y = self.predictor(x)
        if self.lastlayer == 1:  # The number of last layer units = 1
            loss = F.sigmoid_cross_entropy(y, t.reshape(len(t), 1))
            accuracy = F.binary_accuracy(y, t.reshape(len(t), 1))
        else:  # The number of last layer units = 2
            loss = F.softmax_cross_entropy(y, t)
            accuracy = F.accuracy(y, t)
        summary = F.classification_summary(y, t, beta=1.0)
        precision = summary[0]
        recall = summary[1]
        f_value = summary[2]
        reporter = Reporter()
        observer = object()
        reporter.add_observer('f_value:', observer)
        observation = {}
        with reporter.scope(observation):
            reporter.report({'x': f_value}, observer)
        report(
            {
                'loss': loss,
                'accuracy': accuracy,
                'precision': precision,
                'recall': recall,
                'f_value': f_value
            }, self)
        report(dict(('f_value_%d' % i, val) for i, val in enumerate(f_value)),
               self)

        return loss
コード例 #6
0
    def __call__(self, xs,
                 labels):  # xs shape = B,T,F,C,H,W, labels=  (batch, T, F, D)
        assert xs.ndim == 6
        assert labels.ndim == 4
        with chainer.cuda.get_device_from_array(xs.data) as device:
            fc_output = self.forward(xs)  # B, T, F, 2048
            if self.use_label_dependency:
                loss, accuracy = self.label_dependency_layer(
                    fc_output, labels)  # B, T, F, 2048
            else:
                fc_output = F.reshape(fc_output, shape=(-1, self.box_dim))
                fc_output = self.score_fc(fc_output)  # B * T * F, class_num
                labels = self.xp.reshape(labels, (-1, self.class_num))
                pick_index, accuracy_pick_index = self.get_loss_index(
                    fc_output, labels)
                loss = F.sigmoid_cross_entropy(
                    fc_output[list(pick_index[0]),
                              list(pick_index[1])],
                    labels[list(pick_index[0]),
                           list(pick_index[1])])
                accuracy = F.binary_accuracy(
                    fc_output[list(accuracy_pick_index[0]),
                              list(accuracy_pick_index[1])], labels[[
                                  list(accuracy_pick_index[0]),
                                  list(accuracy_pick_index[1])
                              ]])

            return loss, accuracy
コード例 #7
0
    def calc_acc(self, dis_out, label=0, plot_name='acc'):
        prob = F.sigmoid(dis_out)

        label = cp.array([[label] for i in range(len(dis_out))])
        label = Variable(self.converter(label, self.device))
        label = Variable(label.data.astype(int))
        acc_real = F.binary_accuracy(prob - 0.5, label)
        chainer.report({plot_name: acc_real}, self.dis)
コード例 #8
0
ファイル: model.py プロジェクト: priyanmuthu/deep-coder
 def accuracy(y, t):
     xp = backend.get_array_module(y)
     acc_0, acc_1 = tupled_binary_accuracy(y, t)
     reporter.report({
         "accuracy_false": acc_0,
         "accuracy_true": acc_1
     }, classifier)
     return F.binary_accuracy(y, xp.array(t))
コード例 #9
0
ファイル: discriminator.py プロジェクト: Asupara2445/Python3
    def forward(self, inp, target=None):
        out = self.calc(inp)

        if not target is None:
            loss = F.sigmoid_cross_entropy(out, target)
            acc = F.binary_accuracy(out, target)

            return loss, acc

        else:
            out = F.sigmoid(out)
            return out.reshape(-1)
コード例 #10
0
    def evaluate(self, s1, s2, t):
        # 0.5は-1にして評価対象から外す
        t = (t * 2).astype(np.int32)
        t = np.array(t)
        t[t == 1] = -1
        t = t // 2

        o = s1 - s2
        acc = F.binary_accuracy(o, t)
        chainer.report({"accuracy": acc}, self)

        return acc
コード例 #11
0
    def evaluate_roc(self, trainer):
        iterator = self._iterators['main']
        eval_func = self.eval_func or self._targets['main']

        if self.eval_hook:
            self.eval_hook(self)

        if hasattr(iterator, 'reset'):
            iterator.reset()
            it = iterator
        else:
            it = copy.copy(iterator)

        y_total = np.array([]).reshape([0, len(self.label_name)])
        t_total = np.array([]).reshape([0, len(self.label_name)])
        for batch in it:
            in_arrays = self.converter(batch, self.device)

            with chainer.no_backprop_mode(), chainer.using_config('train', False):
                y = eval_func(*in_arrays[:-1])
                t = in_arrays[-1]
            # y = F.sigmoid(y)
            y_data = cuda.to_cpu(y.data)
            t_data = cuda.to_cpu(t)
            y_total = np.vstack([y_total, y_data])
            t_total = np.vstack([t_total, t_data])
        updater = trainer.updater
        epoch = updater.iteration
        out_dir = trainer.out
        observation = {}
        for label_index, label in enumerate(self.label_name):
            y = y_total[:, label_index]
            t = t_total[:, label_index]
            index = numpy.where(t != -1)[0]
            y = y[index]
            t = t[index]
            out_name = os.path.join(out_dir, str(epoch) + 'iteration_' + label + '_roc.pdf')
            gather_data = self.comm.gather(np.vstack([t, y]))
            if self.rank == 0:
                gather_data = reduce(lambda x, y: np.hstack([x, y]), gather_data)
                gather_t = np.array(gather_data[0], dtype=np.int)
                gather_y = np.array(gather_data[1], dtype=np.float32)

                plot_roc(y_true=gather_t, y_score=F.sigmoid(gather_y).data, out_name=out_name)
                roc_auc = metrics.roc_auc_score(gather_t, F.sigmoid(gather_y).data)
                with reporter.report_scope(observation):
                    reporter.report({'roc_auc_' + label: roc_auc}, self._targets['main'])
                    reporter.report({'loss': F.sigmoid_cross_entropy(gather_y, gather_t).data},
                                    self._targets['main'])
                    reporter.report({'accuracy': F.binary_accuracy(gather_y, gather_t).data}, self._targets['main'])
        return observation
コード例 #12
0
    def evaluate_roc(self, trainer):
        iterator = self._iterators['main']
        eval_func = self.eval_func or self._targets['main']

        if self.eval_hook:
            self.eval_hook(self)

        if hasattr(iterator, 'reset'):
            iterator.reset()
            it = iterator
        else:
            it = copy.copy(iterator)

        y_total = []
        t_total = []
        length = it.dataset.__len__()
        batchsize = it.batch_size
        length = length // batchsize
        from tqdm import tqdm
        pbar = tqdm(total=length)
        for batch in it:
            in_arrays = self.converter(batch, self.device)

            with chainer.no_backprop_mode(), chainer.using_config('train', False):
                y = eval_func(*in_arrays[:-1])
                t = in_arrays[-1]
            y_data = cuda.to_cpu(y.data)
            t_data = cuda.to_cpu(t)
            y_total.extend(y_data)
            t_total.extend(t_data)
            pbar.update(1)
        y_total = numpy.concatenate(y_total).ravel()
        t_total = numpy.concatenate(t_total).ravel()
        index = numpy.where(t_total != -1)[0]
        y_total = y_total[index]
        t_total = t_total[index]
        d = {'label': t_total, 'score': y_total}
        from pathlib import Path
        out_path = Path('./valid_result') / str(self.epoch)
        out_path.mkdir(exist_ok=True)
        np.savez(out_path / ('validation_' + str(self.rank)), **d)
        observation = {}
        with reporter.report_scope(observation):
            roc_auc = metrics.roc_auc_score(t_total, F.sigmoid(y_total).data)
            with reporter.report_scope(observation):
                reporter.report({'roc_auc_': roc_auc}, self._targets['main'])
                reporter.report({'loss': F.sigmoid_cross_entropy(y_total, t_total).data},
                                self._targets['main'])
                reporter.report({'accuracy': F.binary_accuracy(y_total, t_total).data}, self._targets['main'])
        return observation
コード例 #13
0
ファイル: model.py プロジェクト: priyanmuthu/deep-coder
def tupled_binary_accuracy(y, t):
    """
    Compte binary classification accuracy

    Attributes
    ----------
    y
        The output predictions
    t
        The ground truth label
    """

    xp = backend.get_array_module(y)
    t_0 = cuda.to_cpu(t.copy())
    t_1 = cuda.to_cpu(t.copy())
    t_0[t_0 == 1] = -1
    t_1[t_0 == 0] = -1
    t_0 = xp.array(t_0)
    t_1 = xp.array(t_1)
    acc_0 = F.binary_accuracy(y, t_0)
    acc_1 = F.binary_accuracy(y, t_1)

    return acc_0, acc_1
コード例 #14
0
    def __call__(self, xs, bboxes, labels):  # all shape is (B, T, F, D)

        node_out = self.forward(xs)  # node_out B,T,F,D
        node_out = F.reshape(node_out, (-1, self.out_size))
        node_labels = self.xp.reshape(labels, (-1, self.out_size))
        pick_index, accuracy_pick_index = self.get_loss_index(node_out, node_labels)
        loss = F.sigmoid_cross_entropy(node_out,
                                        node_labels)
        accuracy = F.binary_accuracy(node_out[list(accuracy_pick_index[0]), list(accuracy_pick_index[1])],
                                     node_labels[[list(accuracy_pick_index[0]), list(accuracy_pick_index[1])]])

        report_dict = {'loss': loss, "accuracy":accuracy}
        chainer.reporter.report(report_dict,
                                self)
        return loss
コード例 #15
0
    def __call__(self, roi_feature, labels):
        # labels shape = B, T, F(9 or 8), 12
        # roi_feature shape =  B, T, F, D, where F is box number in one frame image
        with chainer.cuda.get_device_from_array(roi_feature.data) as device:
            node_out = self.forward(roi_feature, labels)  # node_out B,T,F,D
            node_out = F.reshape(node_out, (-1, self.out_size))
            node_labels = self.xp.reshape(labels, (-1, self.out_size))
            pick_index, accuracy_pick_index = self.get_loss_index(node_out, node_labels)
            loss = F.sigmoid_cross_entropy(node_out[list(pick_index[0]), list(pick_index[1])],
                                            node_labels[list(pick_index[0]), list(pick_index[1])])
            accuracy = F.binary_accuracy(node_out[list(accuracy_pick_index[0]), list(accuracy_pick_index[1])],
                                         node_labels[[list(accuracy_pick_index[0]), list(accuracy_pick_index[1])]])


        return loss, accuracy
コード例 #16
0
ファイル: ima.py プロジェクト: nuric/softuni
 def forward(self, xin, targets):
     """Compute total loss to train."""
     vctx, vq, va, supps = xin  # (B, R, P, C), (B, Q), (B,), (B, I)
     # ---------------------------
     # Compute main loss
     predictions = self.predictor(xin)  # (B,)
     mainloss = F.sigmoid_cross_entropy(predictions, targets)  # ()
     acc = F.binary_accuracy(predictions, targets)  # ()
     # ---------------------------
     # Compute aux losses
     oattloss = F.stack(self.predictor.log['raw_att'], 1)  # (B, I, R)
     oattloss = F.reshape(oattloss, (-1, vctx.shape[1]))  # (B*I, R)
     oattloss = F.softmax_cross_entropy(oattloss, supps.flatten())  # ()
     # ---
     C.report({'loss': mainloss, 'oatt': oattloss, 'acc': acc}, self)
     return mainloss + STRONG * oattloss  # ()
コード例 #17
0
 def __call__(self, xs, crf_pact_structures):
     loss = 0.0
     xp = chainer.cuda.cupy.get_array_module(xs.data)
     accuracy = 0.0
     for idx, X in enumerate(xs):
         crf_pact_structure = crf_pact_structures[idx]
         gt_label = self.get_gt_label_one_graph(xp,
                                                crf_pact_structure,
                                                is_bin=True)  # N x Y
         A = crf_pact_structure.A
         for i in range(self.layers_num):
             X = getattr(self, "attn_{}".format(i))(X, A)
         loss += F.sigmoid_cross_entropy(X, gt_label)
         accuracy = F.binary_accuracy(X, gt_label)
     chainer.reporter.report({"loss": loss, "accuracy": accuracy})
     return loss
コード例 #18
0
    def __call__(self, roi_score, gt_roi_label):  # shape = B, T, F, D (D can be 22(label_number) or 2048)
        with chainer.cuda.get_device_from_array(roi_score.data) as device:
            roi_score = roi_score.reshape(-1, roi_score.shape[-1])
            gt_roi_label = gt_roi_label.reshape(-1, gt_roi_label.shape[-1])
            assert roi_score.shape == gt_roi_label.shape
            union_gt = set()  # union of prediction positive and ground truth positive
            cpu_gt_roi_label = chainer.cuda.to_cpu(gt_roi_label)
            gt_pos_index = np.nonzero(cpu_gt_roi_label)
            cpu_pred_score = (chainer.cuda.to_cpu(roi_score.data) > 0).astype(np.int32)
            pred_pos_index = np.nonzero(cpu_pred_score)
            len_gt_pos = len(gt_pos_index[0]) if len(gt_pos_index[0]) > 0 else 1
            neg_pick_count = self.neg_pos_ratio * len_gt_pos
            gt_pos_index_set = set(list(zip(*gt_pos_index)))
            pred_pos_index_set = set(list(zip(*pred_pos_index)))
            union_gt.update(gt_pos_index_set)
            union_gt.update(pred_pos_index_set)
            false_positive_index = np.asarray(list(pred_pos_index_set - gt_pos_index_set))  # shape = n x 2
            gt_pos_index_lst = list(gt_pos_index_set)
            if neg_pick_count <= len(false_positive_index):
                choice_fp = np.random.choice(np.arange(len(false_positive_index)), size=neg_pick_count, replace=False)
                gt_pos_index_lst.extend(list(map(tuple, false_positive_index[choice_fp].tolist())))
            else:
                gt_pos_index_lst.extend(list(map(tuple, false_positive_index.tolist())))
                rest_pick_count = neg_pick_count - len(false_positive_index)
                gt_neg_index = np.where(cpu_gt_roi_label == 0)
                gt_neg_index_set = set(list(zip(*gt_neg_index)))
                gt_neg_index_set = gt_neg_index_set - set(gt_pos_index_lst)  # remove already picked
                gt_neg_index_array = np.asarray(list(gt_neg_index_set))
                rest_pick_count = len(gt_neg_index_array) if len(gt_neg_index_array) < rest_pick_count else rest_pick_count
                choice_rest = np.random.choice(np.arange(len(gt_neg_index_array)), size=rest_pick_count, replace=False)
                gt_pos_index_lst.extend(list(map(tuple, gt_neg_index_array[choice_rest].tolist())))
            # TODO need class imbalance? NO

            pick_index = list(zip(*gt_pos_index_lst))
            if len(union_gt) == 0:
                accuracy_pick_index = np.where(cpu_gt_roi_label)
            else:
                accuracy_pick_index = list(zip(*union_gt))
            accuracy = F.binary_accuracy(roi_score[list(accuracy_pick_index[0]), list(accuracy_pick_index[1])],
                                         gt_roi_label[list(accuracy_pick_index[0]), list(accuracy_pick_index[1])])
            loss = F.sigmoid_cross_entropy(roi_score[list(pick_index[0]), list(pick_index[1])],
                                           gt_roi_label[list(pick_index[0]), list(pick_index[1])])  # 支持多label

            chainer.reporter.report({
                'loss': loss, "accuracy": accuracy},
                self)
        return loss, accuracy
コード例 #19
0
    def __call__(self, xs, crf_pact_structures):  # xs is chainer.Variable
        '''
        only support batch_size = 1
        some example of NStepLSTM : https://github.com/kei-s/chainer-ptb-nsteplstm/blob/master/train_ptb_nstep.py#L24
        :return : chainer.Variable shape= B * N * D , B is batch_size, N is one video all nodes count, D is each node output vector
        '''

        xp = chainer.cuda.get_array_module(xs.data)
        hs = self.get_output(xs)  # B x N x D, B = 1
        ts = self.get_gt_labels(xp, crf_pact_structures=crf_pact_structures)
        ts = chainer.Variable(ts)
        hs = hs.reshape(-1, hs.shape[-1])
        ts = ts.reshape(-1, ts.shape[-1])
        loss = F.sigmoid_cross_entropy(hs, ts)
        accuracy = F.binary_accuracy(hs, ts)
        chainer.reporter.report({'loss': loss, 'accuracy': accuracy}, self)
        return loss
コード例 #20
0
ファイル: CNNmodel.py プロジェクト: oAzv/GCFM
    def __call__(self, x, t, train=False):
        y = self.predictor(x)

        if self.lastlayer == 1:  # The number of last layer units = 1
            loss = F.sigmoid_cross_entropy(y, t.reshape(len(t), 1))
            accuracy = F.binary_accuracy(y, t.reshape(len(t), 1))
            f1 = F.f1_score(y, t)
        else:  # The number of last layer units = 2
            loss = F.softmax_cross_entropy(y, t)
            accuracy = F.accuracy(y, t).data
            f1 = F.f1_score(y, t)[0].data
            # f1 = F.f1_score(y, t)
        summary = F.classification_summary(y, t, beta=1.0)
        precision = summary[0]
        recall = summary[1]
        f_value = summary[2]

        return accuracy.min(), f1[0]
コード例 #21
0
 def forward(self, texts, labels):
     """Compute total loss to train."""
     # texts [(L1,), (L2,), (L3,)]
     # labels (B,)
     report = dict()
     r = self.predictor(texts)
     # ---------------------------
     # Compute loss and accs
     labels = labels[:, None]  # (B, 1)
     ilabels = self.predictor.inv_examples[1][:, None]  # (I, 1)
     for k, t in [('o', labels), ('u', labels), ('ig', ilabels)]:
         report[k + 'loss'] = F.sigmoid_cross_entropy(r[k + 'pred'], t)
         report[k + 'acc'] = F.binary_accuracy(r[k + 'pred'], t)
     # ---------------------------
     # Aux lossess
     vloss = F.mean(r['vmap'])  # ()
     report['vloss'] = vloss
     # ---------------------------
     C.report(report, self)
     return self.uniparam * (report['uloss'] +
                             0.1 * report['vloss']) + report['oloss']
コード例 #22
0
    def __call__(self, xs,
                 labels):  # xs shape = B,T,F,C,H,W, labels=  (batch, T, F, D)
        assert xs.ndim == 4
        assert labels.ndim == 4
        with chainer.cuda.get_device_from_array(xs.data) as device:
            fc_output = self.forward(xs)  # B, T, F, 2048
            fc_output = F.reshape(fc_output, (-1, self.class_num))
            labels = self.xp.reshape(labels, (-1, self.class_num))
            pick_index, accuracy_pick_index = self.get_loss_index(
                fc_output, labels)
            loss = F.sigmoid_cross_entropy(
                fc_output[list(pick_index[0]),
                          list(pick_index[1])], labels[list(pick_index[0]),
                                                       list(pick_index[1])])
            accuracy = F.binary_accuracy(
                fc_output[list(accuracy_pick_index[0]),
                          list(accuracy_pick_index[1])], labels[[
                              list(accuracy_pick_index[0]),
                              list(accuracy_pick_index[1])
                          ]])

            return loss, accuracy
コード例 #23
0
    def __call__(self, xs,
                 labels):  # xs shape = B,T,F,C,H,W, labels=  (batch, T, F, D)
        assert xs.ndim == 6
        assert labels.ndim == 4
        fc_output = self.forward(xs)  # B, T, F, 2048

        fc_output = F.reshape(fc_output, shape=(-1, self.box_dim))
        fc_output = self.score_fc(fc_output)  # B * T * F, class_num
        labels = self.xp.reshape(labels, (-1, self.class_num))
        pick_index, accuracy_pick_index = self.get_loss_index(
            fc_output, labels)
        loss = F.sigmoid_cross_entropy(
            fc_output[list(pick_index[0]),
                      list(pick_index[1])], labels[list(pick_index[0]),
                                                   list(pick_index[1])])
        accuracy = F.binary_accuracy(
            fc_output[list(accuracy_pick_index[0]),
                      list(accuracy_pick_index[1])], labels[[
                          list(accuracy_pick_index[0]),
                          list(accuracy_pick_index[1])
                      ]])

        return loss, accuracy
コード例 #24
0
 def forward(self, inputs, device):
     x, t = inputs
     return functions.binary_accuracy(x, t),
コード例 #25
0
ファイル: test_binary_accuracy.py プロジェクト: pfnet/chainer
 def forward(self, inputs, device):
     x, t = inputs
     return functions.binary_accuracy(x, t),
コード例 #26
0
ファイル: test.py プロジェクト: BaronYSYong/chainer-tutorial
from __future__ import print_function, unicode_literals

import numpy as np

import chainer
import chainer.functions as F

if __name__ == '__main__':
    a = np.array([[0.0, -0.5], [0.0, 0.5]])
    print(a)
    t = np.array([0, 0], 'i')
    tb = np.array([[1, 0], [0, 1]], 'i')
    print(t)
    print(F.accuracy(a, t).data)
    print(F.binary_accuracy(a, tb).data)

    tc = np.array([[1, 0], [1, 0], [0, 1], [0, 1]])
    print(np.where(tc))
    print(np.where(tc)[1])

    x = np.random.random((10, 4))
    b1 = (0, 2)
    b2 = (2, 4)
    print(x)
    print(x[:, slice(*b1)])
    print(x[:, slice(*b2)])
コード例 #27
0
ファイル: train_chain.py プロジェクト: zhangxujinsh/AU_R-CNN
    def __call__(self, imgs, label):
        """Forward backbone and sigmoid cross entropy loss.
        support batch_size > 1 train
        Here are notations used.
        * :math:`N` is the batch size.

        Args:
            imgs (~chainer.Variable): A variable with a batch of images. shape is (N C H W)


        Returns:
            chainer.Variable:
            Scalar loss variable.
            This is the sum of losses for Region Proposal Network and
            the head module.

        """
        xp = cuda.get_array_module(imgs)
        with cuda.get_device_from_array(imgs) as device:

            _, _, H, W = imgs.shape
            score = self.backbone(imgs)

            # 算sigmoid的时候,从gt中挑选=1的元素,然后从pred=1 但gt=0中挑选元素,如果还不够再从剩下的随机挑选凑够x 3倍的=0元素,最后算sigmoid cross entropy
            union_gt = set()  # union of prediction positive and ground truth positive
            cpu_gt_roi_label = chainer.cuda.to_cpu(label)
            gt_pos_index = np.nonzero(cpu_gt_roi_label)
            cpu_pred_score = (chainer.cuda.to_cpu(score.data) > 0).astype(np.int32)
            pred_pos_index = np.nonzero(cpu_pred_score)
            len_gt_pos = len(gt_pos_index[0]) if len(gt_pos_index[0]) > 0 else 1
            neg_pick_count = self.neg_pos_ratio * len_gt_pos
            gt_pos_index_set = set(list(zip(*gt_pos_index)))
            pred_pos_index_set = set(list(zip(*pred_pos_index)))
            union_gt.update(gt_pos_index_set)
            union_gt.update(pred_pos_index_set)
            false_positive_index = np.asarray(list(pred_pos_index_set - gt_pos_index_set))  # shape = n x 2
            gt_pos_index_lst = list(gt_pos_index_set)
            if neg_pick_count <= len(false_positive_index):
                choice_fp = np.random.choice(np.arange(len(false_positive_index)), size=neg_pick_count, replace=False)
                gt_pos_index_lst.extend(list(map(tuple,false_positive_index[choice_fp].tolist())))
            else:
                gt_pos_index_lst.extend(list(map(tuple, false_positive_index.tolist())))
                rest_pick_count = neg_pick_count - len(false_positive_index)
                gt_neg_index = np.where(cpu_gt_roi_label == 0)
                gt_neg_index_set = set(list(zip(*gt_neg_index)))
                gt_neg_index_set = gt_neg_index_set - set(gt_pos_index_lst)  # remove already picked
                gt_neg_index_array = np.asarray(list(gt_neg_index_set))
                rest_pick_count = min(rest_pick_count, len(gt_neg_index_array))
                choice_rest = np.random.choice(np.arange(len(gt_neg_index_array)), size=rest_pick_count, replace=False)
                gt_pos_index_lst.extend(list(map(tuple,gt_neg_index_array[choice_rest].tolist())))

            pick_index = list(zip(*gt_pos_index_lst))
            if len(union_gt) == 0:
                accuracy_pick_index = np.where(cpu_gt_roi_label)
            else:
                accuracy_pick_index = list(zip(*union_gt))
            accuracy = F.binary_accuracy(score[list(accuracy_pick_index[0]), list(accuracy_pick_index[1])],
                                         label[list(accuracy_pick_index[0]), list(accuracy_pick_index[1])])
            loss = F.sigmoid_cross_entropy(score,
                                           label)

            chainer.reporter.report({
                'loss': loss, "accuracy": accuracy},
                self)
            return loss
コード例 #28
0
        itr += 1
        sum_loss += loss.data
        itr_epoch += 1
        sum_loss_epoch += loss.data

        # print train loss and test accuracy
        if optimizer.t % eval_interval == 0:
            x1, x2, t = mini_batch(np.random.choice(test_data, 640))
            with chainer.no_backprop_mode():
                with chainer.using_config('train', False):
                    y = model(x1, x2)
            loss = F.sigmoid_cross_entropy(y, t)
            logging.info('epoch = {}, iteration = {}, train loss = {}, test loss = {}, test accuracy = {}'.format(
                optimizer.epoch + 1, optimizer.t, sum_loss / itr,
                loss.data,
                F.binary_accuracy(y, t).data))
            itr = 0
            sum_loss = 0

    # validate test data
    itr_test = 0
    sum_test_loss = 0
    sum_test_accuracy = 0
    for i in range(0, len(test_data) - args.batchsize, args.batchsize):
        x1, x2, t = mini_batch(test_data[i:i+args.batchsize])
        with chainer.no_backprop_mode():
            with chainer.using_config('train', False):
                y = model(x1, x2)
        itr_test += 1
        sum_test_loss += F.sigmoid_cross_entropy(y, t).data
        sum_test_accuracy += F.binary_accuracy(y, t).data
コード例 #29
0
        itr += 1
        sum_loss += loss.data
        itr_epoch += 1
        sum_loss_epoch += loss.data

        # print train loss and test accuracy
        if optimizer.t % args.eval_interval == 0:
            x, t1, t2 = mini_batch_for_test(positions_test,
                                            args.test_batchsize)
            y1, y2 = model(x)
            logging.info(
                'epoch = {}, iteration = {}, loss = {}, accuracy = {}, {}'.
                format(optimizer.epoch + 1, optimizer.t, sum_loss / itr,
                       F.accuracy(y1, t1).data,
                       F.binary_accuracy(y2, t2).data))
            itr = 0
            sum_loss = 0

    # validate test data
    logging.info('validate test data')
    itr_test = 0
    sum_test_accuracy1 = 0
    sum_test_accuracy2 = 0
    for i in range(0, len(positions_test) - args.batchsize, args.batchsize):
        x, t1, t2 = mini_batch(positions_test, i, args.batchsize)
        y1, y2 = model(x)
        itr_test += 1
        sum_test_accuracy1 += F.accuracy(y1, t1).data
        sum_test_accuracy2 += F.binary_accuracy(y2, t2).data
    logging.info(
コード例 #30
0
    dataset = LogicDataset(batch_size, seq_len, max_ops, min_ops)
    dim_vector = dataset.dim_vector

    model = ACTNet(dim_vector, state_size, 1)
    if use_gpu:
        model.to_gpu()
    optimizer = chainer.optimizers.Adam(learning_rate)
    optimizer.setup(model)
    optimizer.use_cleargrads(True)

    loss_log = []
    for i in range(1000000):
        print('{}:'.format(i), end=' ')
        x, t = next(dataset)

        y, ponder_cost = model(x)
        loss = F.sigmoid_cross_entropy(y, t) + time_penalty * ponder_cost
        model.cleargrads()
        loss.backward()
        loss_log.append(chainer.cuda.to_cpu(loss.data))
        optimizer.update()

        accuracy = F.binary_accuracy(y, t)

        print('acc:', accuracy.data)

        if i % 50 == 0:
            plt.plot(loss_log, '.', markersize=1)
            plt.grid()
            plt.show()
コード例 #31
0
    def __call__(self, imgs, bboxes, labels):
        """Forward Faster R-CNN and calculate losses.
        support batch_size > 1 train
        Here are notations used.

        * :math:`N` is the batch size.
        * :math:`R` is the number of bounding boxes per image.
        * :math:`L` is the number of Action Unit Set(in config.py define)
        Currently, only :math:`N=1` is supported.

        Args:
            imgs (~chainer.Variable): A variable with a batch of images. shape is (N C H W)
            bboxes (~chainer.Variable): A batch of ground truth bounding boxes.
                Its shape is :math:`(N, R, 4)`.

            labels (~chainer.Variable): A batch of labels.
                Its shape is :math:`(N, R, L)`. this is for the multi-label region,
                 The background is excluded from the definition, which means that the range of the value
                is :math:`[-1,0,1]`.0 means this AU index does not occur. -1 means ignore_label
                classes.

        Returns:
            chainer.Variable:
            Scalar loss variable.
            This is the sum of losses for Region Proposal Network and
            the head module.

        """
        xp = cuda.get_array_module(imgs)
        with cuda.get_device_from_array(imgs) as device:
            if isinstance(bboxes, chainer.Variable):
                bboxes = bboxes.data
            if isinstance(labels, chainer.Variable):
                labels = labels.data

            batch_size = bboxes.shape[0]

            _, _, H, W = imgs.shape
            # Since batch size is one, convert variables to singular form
            if batch_size > 1:
                rois = []
                roi_batch_indices = []
                gt_roi_label = []
                for n in range(batch_size):
                    bbox = bboxes[n]  # bbox仍然是一个list,表示一个图内部的bbox
                    label = labels[n]  # label仍然是一个list,表示一个图内部的label
                    # 若其中的一个label为-99 表示是padding的值,此时该bbox是[-99,-99,-99,-99]
                    bbox = bbox[bbox != xp.array(-99)].reshape(-1, 4)
                    label = label[label != xp.array(-99)].reshape(
                        -1, len(config.AU_SQUEEZE))
                    assert label.shape[0] == bbox.shape[0] and bbox.shape[0] > 0
                    # Sample RoIs and forward
                    sample_roi = bbox
                    sample_roi_index = n * np.ones(
                        (len(sample_roi), ), dtype=xp.int32)
                    gt_roi_label.extend(label)  # list 可以extend ndarray
                    rois.extend(sample_roi)
                    roi_batch_indices.extend(sample_roi_index)
                rois = xp.stack(rois).astype(dtype=xp.float32)
                gt_roi_label = xp.stack(gt_roi_label).astype(dtype=xp.int32)
                roi_batch_indices = xp.asarray(roi_batch_indices).astype(
                    dtype=xp.int32)

            elif batch_size == 1:  # batch_size = 1
                bbox = bboxes[0]
                label = labels[0]
                rois, gt_roi_label = bbox, label
                roi_batch_indices = xp.zeros((len(rois), ), dtype=xp.int32)

            roi_indices = roi_batch_indices.astype(np.float32)
            indices_and_rois = self.xp.concatenate(
                (roi_indices[:, None], rois),
                axis=1)  # None means np.newaxis, concat along column
            roi_score = self.fpn(imgs, indices_and_rois)

            roi_score = roi_score.reshape(-1, self.fpn.classes)
            assert gt_roi_label.shape[-1] == self.fpn.classes

            union_gt = set(
            )  # union of prediction positive and ground truth positive
            cpu_gt_roi_label = chainer.cuda.to_cpu(gt_roi_label)
            gt_pos_index = np.nonzero(cpu_gt_roi_label)
            cpu_pred_score = (chainer.cuda.to_cpu(roi_score.data) > 0).astype(
                np.int32)
            pred_pos_index = np.nonzero(cpu_pred_score)
            len_gt_pos = len(
                gt_pos_index[0]) if len(gt_pos_index[0]) > 0 else 1
            neg_pick_count = self.neg_pos_ratio * len_gt_pos
            gt_pos_index_set = set(list(zip(*gt_pos_index)))
            pred_pos_index_set = set(list(zip(*pred_pos_index)))
            union_gt.update(gt_pos_index_set)
            union_gt.update(pred_pos_index_set)
            false_positive_index = np.asarray(
                list(pred_pos_index_set - gt_pos_index_set))  # shape = n x 2
            gt_pos_index_lst = list(gt_pos_index_set)
            if neg_pick_count <= len(false_positive_index):
                choice_fp = np.random.choice(np.arange(
                    len(false_positive_index)),
                                             size=neg_pick_count,
                                             replace=False)
                gt_pos_index_lst.extend(
                    list(map(tuple, false_positive_index[choice_fp].tolist())))
            else:
                gt_pos_index_lst.extend(
                    list(map(tuple, false_positive_index.tolist())))
                rest_pick_count = neg_pick_count - len(false_positive_index)
                gt_neg_index = np.where(cpu_gt_roi_label == 0)
                gt_neg_index_set = set(list(zip(*gt_neg_index)))
                gt_neg_index_set = gt_neg_index_set - set(
                    gt_pos_index_lst)  # remove already picked
                gt_neg_index_array = np.asarray(list(gt_neg_index_set))
                choice_rest = np.random.choice(np.arange(
                    len(gt_neg_index_array)),
                                               size=rest_pick_count,
                                               replace=False)
                gt_pos_index_lst.extend(
                    list(map(tuple, gt_neg_index_array[choice_rest].tolist())))

            pick_index = list(zip(*gt_pos_index_lst))
            if len(union_gt) == 0:
                accuracy_pick_index = np.where(cpu_gt_roi_label)
            else:
                accuracy_pick_index = list(zip(*union_gt))
            accuracy = F.binary_accuracy(
                roi_score[list(accuracy_pick_index[0]),
                          list(accuracy_pick_index[1])],
                gt_roi_label[list(accuracy_pick_index[0]),
                             list(accuracy_pick_index[1])])
            loss = F.sigmoid_cross_entropy(
                roi_score[list(pick_index[0]),
                          list(pick_index[1])],
                gt_roi_label[list(pick_index[0]),
                             list(pick_index[1])])  # 支持多label

            chainer.reporter.report({'loss': loss, "accuracy": accuracy}, self)
        return loss