コード例 #1
0
    def check_forward(self, h_data):
        h = chainer.Variable(h_data)
        loss = functions.decov(h)
        self.assertEqual(loss.data.shape, ())
        self.assertEqual(loss.data.dtype, numpy.float32)
        loss_value = float(loss.data)

        # Compute expected value
        h_data = cuda.to_cpu(h_data)
        h_mean = h_data.mean(axis=0)
        N = h_data.shape[0]

        loss_expect = 0
        for i in six.moves.range(h_data.shape[1]):
            for j in six.moves.range(h_data.shape[1]):
                ij_loss = 0.
                if i != j:
                    for n in six.moves.range(N):
                        ij_loss += (h_data[n, i] - h_mean[i]) * (h_data[n, j] -
                                                                 h_mean[j])
                    ij_loss /= N
                loss_expect += ij_loss**2
        loss_expect *= 0.5

        self.assertAlmostEqual(loss_expect, loss_value, places=5)
コード例 #2
0
ファイル: test_decov.py プロジェクト: KotaroSetoyama/chainer
    def check_forward(self, h_data):
        h = chainer.Variable(h_data)
        loss = functions.decov(h)
        self.assertEqual(loss.data.shape, ())
        self.assertEqual(loss.data.dtype, numpy.float32)
        loss_value = float(loss.data)

        # Compute expected value
        h_data = cuda.to_cpu(h_data)
        h_mean = h_data.mean(axis=0)
        N = h_data.shape[0]

        loss_expect = 0
        for i in six.moves.range(h_data.shape[1]):
            for j in six.moves.range(h_data.shape[1]):
                ij_loss = 0.
                if i != j:
                    for n in six.moves.range(N):
                        ij_loss += (h_data[n, i] - h_mean[i]) * (
                            h_data[n, j] - h_mean[j])
                    ij_loss /= N
                loss_expect += ij_loss ** 2
        loss_expect *= 0.5

        self.assertAlmostEqual(loss_expect, loss_value, places=5)
コード例 #3
0
ファイル: test_decov.py プロジェクト: asi1024/chainer
    def check_forward(self, h_data):
        h = chainer.Variable(h_data)
        loss = functions.decov(h, self.reduce)
        self.assertEqual(loss.shape, self.gloss.shape)
        self.assertEqual(loss.data.dtype, self.dtype)
        loss_value = cuda.to_cpu(loss.data)

        # Compute expected value
        h_data = cuda.to_cpu(h_data)

        loss_expect = _deconv(h_data)
        if self.reduce == 'half_squared_sum':
            loss_expect = (loss_expect ** 2).sum() * 0.5

        numpy.testing.assert_allclose(
            loss_expect, loss_value, **self.forward_options)
コード例 #4
0
ファイル: test_decov.py プロジェクト: zwcdp/chainer
    def check_forward(self, h_data):
        h = chainer.Variable(h_data)
        loss = functions.decov(h, self.reduce)
        self.assertEqual(loss.shape, self.gloss.shape)
        self.assertEqual(loss.data.dtype, self.dtype)
        loss_value = cuda.to_cpu(loss.data)

        # Compute expected value
        h_data = cuda.to_cpu(h_data)

        loss_expect = _deconv(h_data)
        if self.reduce == 'half_squared_sum':
            loss_expect = (loss_expect**2).sum() * 0.5

        numpy.testing.assert_allclose(loss_expect, loss_value,
                                      **self.forward_options)
コード例 #5
0
ファイル: test_decov.py プロジェクト: asi1024/chainer
 def check_type(self, h_data, gloss_data):
     h = chainer.Variable(h_data)
     loss = functions.decov(h, self.reduce)
     loss.grad = gloss_data
     loss.backward()
     self.assertEqual(h_data.dtype, h.grad.dtype)
コード例 #6
0
ファイル: test_decov.py プロジェクト: asi1024/chainer
 def f(h):
     return functions.decov(h, self.reduce)
コード例 #7
0
ファイル: test_decov.py プロジェクト: asi1024/chainer
    def check_invalid_option(self, xp):
        h = xp.asarray(self.h)

        with self.assertRaises(ValueError):
            functions.decov(h, 'invalid_option')
コード例 #8
0
 def check_type(self, h_data):
     h = chainer.Variable(h_data)
     loss = functions.decov(h)
     loss.backward()
     self.assertEqual(h_data.dtype, h.grad.dtype)
コード例 #9
0
ファイル: test_decov.py プロジェクト: zwh930712/chainer
    def check_invalid_option(self, xp):
        h = xp.asarray(self.h)

        with self.assertRaises(ValueError):
            functions.decov(h, 'invalid_option')
コード例 #10
0
ファイル: test_decov.py プロジェクト: zwh930712/chainer
 def forward(self, inputs, device):
     h, = inputs
     loss = functions.decov(h, self.reduce)
     return loss,
コード例 #11
0
ファイル: test_decov.py プロジェクト: zwcdp/chainer
 def f(h):
     return functions.decov(h, self.reduce)