コード例 #1
0
    def generate_c(self, link_idx, inp_shape):
        name = self.cname + str(link_idx)
        text = []

        # BinaryLinear bl
        l = self.bl
        lName = l.name
        lname=name+'_'+lName
        for p in l.params():
            pname=p.name
            if pname == 'W':
                text += [bu.np_to_uint8C(bu.binarize_real(p.data.T), lname+'_'+pname, 'col_major', pad='1')]
                num_classes = p.data.shape[0]
                fc_size = p.data.shape[1]
            elif pname == 'b':
                text += [bu.np_to_floatC(p.data, lname+'_'+pname, 'row_major')]

        text = "\n".join(text)
        m = 1
        n = fc_size
        k = num_classes

        ftext = "void {name}(uint8_t* input, uint8_t* output){{\n"
        ftext += "  blinear_layer(input, {name}_bl_W, output, {name}_bl_b, {m}, {n}, {k}); \n}}\n\n"
        ftext = ftext.format(name=name, m=m, n=n, k=k)
        text += ftext

        return text
コード例 #2
0
    def generate_c(self, link_idx, inp_shape):
        name = self.cname + str(link_idx)
        text = []

        # BinaryLinear bl
        l = self.bl
        lName = l.name
        lname=name+'_'+lName
        for p in l.params():
            pname=p.name
            if pname == 'W':
                text += [bu.np_to_uint8C(bu.binarize_real(p.data.T), lname+'_'+pname, 'col_major', pad='1')]
                num_classes = p.data.shape[0]
                fc_size = p.data.shape[1]
            elif pname == 'b':
                text += [bu.np_to_floatC(p.data, lname+'_'+pname, 'row_major')]

        # BatchNormalization bn
        l = self.bn
        lName = l.name
        lname=name+'_'+lName
        for p in l.params():
            pname=p.name
            if pname == 'gamma':
                text += [bu.np_to_floatC(p.data, lname+'_'+pname, 'row_major')]
            elif pname == 'beta':
                text += [bu.np_to_floatC(p.data, lname+'_'+pname, 'row_major')]
        for p in l._persistent:
            pname=p
            persistent = l.__dict__[p]
            if pname == 'avg_mean':
                text += [bu.np_to_floatC(persistent, lname+'_mean', 'row_major')]
            elif pname == 'avg_var':
                text += [bu.np_to_floatC(np.sqrt(persistent, dtype=persistent.dtype), lname+'_std', 'row_major')]

        text = "\n".join(text)+'\n'
        m = 1
        n = fc_size
        k = num_classes

        ftext = "void {name}(uint8_t* input, uint8_t* output){{\n"
        ftext += "  blinear_layer(input, {name}_bl_W, output, {name}_bl_b, {name}_bn_gamma, {name}_bn_beta, {name}_bn_mean, {name}_bn_std, {m}, {n}, {k}); \n}}\n\n"
        ftext = ftext.format(name=name, m=m, n=n, k=k)
        text += ftext

        return text
コード例 #3
0
    def generate_c(self, link_idx, inp_shape):
        #if not hasattr(self,'inp_shape'):
        #    raise Exception("no input shape found")
        #    return ""
        w, h = inp_shape[2:4]
        name = self.cname + str(link_idx)
        text = []
        m = 1
        sw, sh = self.bconv.stride
        pw, ph = self.bconv.pad
        pl_w, pl_h = 1, 1
        pl_sw, pl_sh = 1, 1
        pl_pw, pl_ph = 0, 0

        # Bconv
        l = self.bconv
        lname = name + '_' + l.name
        for p in l.params():
            pname = p.name
            if pname == 'W':
                num_f, n, kw, kh = p.data.shape
                bin_data = bu.binarize_real(p.data).reshape(
                    p.data.shape[0] * p.data.shape[1], -1)
                text += [
                    bu.np_to_uint8C(bin_data,
                                    lname + '_' + pname,
                                    'row_major',
                                    pad='1')
                ]
            elif pname == 'b':
                text += [
                    bu.np_to_floatC(p.data, lname + '_' + pname, 'row_major')
                ]

        # BatchNormalization bn
        l = self.bn
        lName = l.name
        lname = name + '_' + lName
        for p in l.params():
            pname = p.name
            if pname == 'gamma':
                text += [
                    bu.np_to_floatC(p.data, lname + '_' + pname, 'row_major')
                ]
            elif pname == 'beta':
                text += [
                    bu.np_to_floatC(p.data, lname + '_' + pname, 'row_major')
                ]
        for p in l._persistent:
            pname = p
            persistent = l.__dict__[p]
            if pname == 'avg_mean':
                text += [
                    bu.np_to_floatC(persistent, lname + '_mean', 'row_major')
                ]
            elif pname == 'avg_var':
                text += [
                    bu.np_to_floatC(
                        np.sqrt(persistent, dtype=persistent.dtype),
                        lname + '_std', 'row_major')
                ]

        text = "\n".join(text) + '\n'
        ftext = "void {name}(uint8_t* input, uint8_t* output){{\n"
        ftext += "  bconv_layer(input, {name}_bconv_W, output, {name}_bconv_b, {name}_bn_gamma, {name}_bn_beta, {name}_bn_mean, {name}_bn_std, {m}, {num_f}, {w}, {h}, {n}, {kw}, {kh}, {sw}, {sh}, {pw}, {ph}, {pl_w}, {pl_h}, {pl_sw}, {pl_sh}, {pl_pw}, {pl_ph});\n}}\n\n"
        ftext = ftext.format(name=name,
                             m=m,
                             n=n,
                             w=w,
                             h=h,
                             num_f=num_f,
                             kw=kw,
                             kh=kh,
                             sw=sw,
                             sh=sh,
                             pw=pw,
                             ph=ph,
                             pl_w=pl_w,
                             pl_h=pl_h,
                             pl_sw=pl_sw,
                             pl_sh=pl_sh,
                             pl_pw=pl_pw,
                             pl_ph=pl_ph)
        text += ftext

        return text