def convert_model(model: 'chainer.Chain', args=[]): # reset values values.reset_field_and_attributes() utils.reset_guid() values.function_converters.clear() values.builtin_function_converters.clear() values.instance_converters.clear() def instance_converter(m, i): if links_builtin.is_builtin_chainer_link(i): return links_builtin.ChainerLinkInstance(m, i) if isinstance(i, chainer.ChainList): module = values.Object(values.ModuleValue(sys.modules[i.__module__])) return links_builtin.ChainerChainListInstance(module, i) if isinstance(i, chainer.Link): module = values.Object(values.ModuleValue(sys.modules[i.__module__])) return links_builtin.ChainerChainInstance(module, i) return None values.instance_converters.append(instance_converter) custom_functions_module = values.Object(values.ModuleValue(custom_functions)) # onnx functions_onnx_module = values.Object(values.ModuleValue(functions_onnx)) def ret_same(funcArgs): return functions.generate_value_with_same_type(funcArgs.keywords['x'].get_value()) values.function_converters[functions_onnx.onnx_abs] = values.FuncValue(functions_builtin.ChainerFunction(functions_onnx.onnx_abs, ret_value_func=ret_same), None, module=functions_onnx_module) # chainer c_variable = values.FuncValue(functions_ndarray.NDArrayFunction(), None) values.function_converters[chainer.Variable] = c_variable # chainer.functions def add_chainer_function(func, ret_value_func = None): if ret_value_func is None: f = values.FuncValue( functions_builtin.ChainerFunction(func), None) else: f = values.FuncValue( functions_builtin.ChainerFunction(func, ret_value_func=ret_value_func), None) values.function_converters[func] = f def ret_tuple(funcArgs = None): ret = values.TupleValue() ret.vtype = values.TensorValue return ret # register unsupported functions to show error when unsupported functions are called for f in F.__dict__.items(): if inspect.isfunction(f[1]): values.function_converters[f[1]] = values.FuncValue(functions.UnimplementedFunction(f[1]), None) # activation add_chainer_function(F.elu) add_chainer_function(F.leaky_relu) add_chainer_function(F.log_softmax) add_chainer_function(F.relu) add_chainer_function(F.selu) add_chainer_function(F.sigmoid) add_chainer_function(F.softmax) add_chainer_function(F.tanh) add_chainer_function(F.softmax_cross_entropy) add_chainer_function(F.pad_sequence) add_chainer_function(F.average_pooling_2d) add_chainer_function(F.unpooling_2d) add_chainer_function(F.reshape) add_chainer_function(F.transpose) add_chainer_function(F.split_axis, ret_value_func=ret_tuple) add_chainer_function(F.hstack) add_chainer_function(F.vstack) add_chainer_function(F.stack) add_chainer_function(F.separate, ret_value_func=ret_tuple) add_chainer_function(F.squeeze) add_chainer_function(F.swapaxes) add_chainer_function(F.dropout) add_chainer_function(F.concat) add_chainer_function(F.matmul) add_chainer_function(F.max_pooling_2d) add_chainer_function(F.resize_images) add_chainer_function(F.broadcast_to) add_chainer_function(F.expand_dims) add_chainer_function(F.local_response_normalization) add_chainer_function(F.mean) add_chainer_function(F.average) add_chainer_function(F.sum) add_chainer_function(F.maximum) add_chainer_function(F.minimum) add_chainer_function(F.max) add_chainer_function(F.min) values.function_converters[F.absolute] = values.FuncValue(functions.UserDefinedFunction(custom_functions.chainer_absolute), None, module=custom_functions_module) add_chainer_function(F.sin) add_chainer_function(F.sinh) add_chainer_function(F.sign) add_chainer_function(F.cos) add_chainer_function(F.cosh) add_chainer_function(F.tan) add_chainer_function(F.tanh) add_chainer_function(F.arcsin) add_chainer_function(F.arccos) add_chainer_function(F.arctan) add_chainer_function(F.exp) add_chainer_function(F.log) add_chainer_function(F.sqrt) add_chainer_function(F.clip) values.function_converters[F.argmax] = values.FuncValue(functions_builtin.ChainerArgminmaxFunction(F.argmax), None) values.function_converters[F.argmin] = values.FuncValue(functions_builtin.ChainerArgminmaxFunction(F.argmin), None) values.function_converters[F.clipped_relu] = values.FuncValue(functions.UserDefinedFunction(custom_functions.chainer_clipped_relu), None, module=custom_functions_module) if int(chainer.__version__[0]) >= 6: add_chainer_function(F.roi_max_pooling_2d) add_chainer_function(F.roi_average_pooling_2d) add_chainer_function(F.roi_max_align_2d) add_chainer_function(F.roi_average_align_2d) # numpy f_array = values.FuncValue(functions_ndarray.NDArrayFunction(), None) f_zeros = values.FuncValue(functions_ndarray.NDArrayZerosFunction(), None) f_full = values.FuncValue(functions_ndarray.NDArrayFullFunction(), None) f_ceil = values.FuncValue(functions_ndarray.NDArrayCeilFunction(), None) f_cumsum = values.FuncValue(functions_ndarray.NDArrayCumsumFunction(), None) f_maximum = values.FuncValue(functions_ndarray.NDArrayChainerFunction(functions_ndarray.dummy_maximum), None) f_minimum = values.FuncValue(functions_ndarray.NDArrayChainerFunction(functions_ndarray.dummy_minimum), None) f_argmax = values.FuncValue(functions_ndarray.NDarrayArgminmaxFunction(functions_ndarray.dummy_argmax), None) f_argmin = values.FuncValue(functions_ndarray.NDarrayArgminmaxFunction(functions_ndarray.dummy_argmin), None) f_round = values.FuncValue(functions_ndarray.NDarrayRoundFunction(functions_ndarray.dummy_round), None) f_sqrt = values.FuncValue(functions_ndarray.NDarraySqrtFunction(functions_ndarray.dummy_sqrt), None) f_stack = values.FuncValue(functions_ndarray.NDarrayStackFunction(functions_ndarray.dummy_stack), None) f_reshape = values.FuncValue(functions_ndarray.NDarrayReshapeFunction(functions_ndarray.dummy_reshape), None) f_transpose = values.FuncValue(functions_ndarray.NDarrayTransposeFunction(functions_ndarray.dummy_transpose), None) f_int32 = values.FuncValue(functions_ndarray.NDArrayInt32(), None) f_float32 = values.FuncValue(functions_ndarray.NDArrayFloat32(), None) values.function_converters[np.array] = f_array values.function_converters[np.zeros] = f_zeros values.function_converters[np.full] = f_full values.function_converters[np.ceil] = f_ceil values.function_converters[np.cumsum] = f_cumsum values.function_converters[np.int32] = f_int32 values.function_converters[np.float32] = f_float32 values.function_converters[np.maximum] = f_maximum values.function_converters[np.minimum] = f_minimum values.function_converters[np.argmax] = f_argmax values.function_converters[np.argmin] = f_argmin values.function_converters[np.round] = f_round values.function_converters[np.sqrt] = f_sqrt values.function_converters[np.stack] = f_stack values.function_converters[np.reshape] = f_reshape values.function_converters[np.transpose] = f_transpose values.function_converters[np.clip] = values.FuncValue(functions.UserDefinedFunction(custom_functions.numpy_clip), None, module=custom_functions_module) values.function_converters[np.absolute] = values.FuncValue(functions.UserDefinedFunction(custom_functions.numpy_absolute), None, module=custom_functions_module) values.function_converters[custom_functions.check_attribute_value] = values.FuncValue(functions.CheckAttributeValueFunction(), None, module=custom_functions_module) values.function_converters[custom_functions.check_attribute_scalar] = values.FuncValue(functions.CheckAttributeScalarFunction(), None, module=custom_functions_module) values.builtin_function_converters['abs'] = values.FuncValue(functions.UserDefinedFunction(custom_functions.builtin_absolute), None, module=custom_functions_module) m_range = values.FuncValue(functions_builtin.RangeFunction(), None) values.builtin_function_converters['range'] = m_range m_len = values.FuncValue(functions_builtin.LenFunction(), None) values.builtin_function_converters['len'] = m_len values.function_converters[six.moves.range] = m_range m_list = values.FuncValue(functions_builtin.ListFunction(), None) values.builtin_function_converters['list'] = m_list m_print = values.FuncValue(functions_builtin.PrintFunction(), None) values.builtin_function_converters['print'] = m_print m_getattr = values.FuncValue(functions_builtin.GetAttrFunction(), None) values.builtin_function_converters['getattr'] = m_getattr m_hasattr = values.FuncValue(functions_builtin.HasAttrFunction(), None) values.builtin_function_converters['hasattr'] = m_hasattr m_to_gpu = values.FuncValue(functions_builtin.CopyFunction(cuda.to_gpu), None) values.function_converters[cuda.to_gpu] = m_to_gpu m_to_cpu = values.FuncValue(functions_builtin.CopyFunction(cuda.to_cpu), None) values.function_converters[cuda.to_cpu] = m_to_cpu # generate VEvalFlag functions def add_veval_flag_function(name:'str', func): f = values.FuncValue(functions_builtin.VEvalContextFunction(func), None) values.builtin_function_converters[name] = f add_veval_flag_function('eval_as_written_target', flags.eval_as_written_target) add_veval_flag_function('ignore_branch', flags.ignore_branch) add_veval_flag_function('for_unroll', flags.for_unroll) # generate default module default_module = values.Object(values.ModuleValue(sys.modules[model.__module__])) model_inst = values.parse_instance(default_module, '', model) forward_func = model_inst.try_get_and_store_obj('forward', None) # convert args finput = functions.FunctionArgInput() value_args = [] ind = 0 node_input = nodes.NodeInput('input') for arg in args: varg = values.parse_instance(default_module, '', arg, None) varg.name = 'in_' + str(ind) varg.get_value().name = 'in_' + str(ind) # make value unknown varg.get_value().internal_value = None finput.inputs.append(varg) value_args.append(varg.get_value()) ind += 1 node_input.set_outputs(value_args) graph = Graph() graph.root_graph = graph graph.add_node(node_input) forward_func_value = forward_func.get_value() ret = forward_func_value.func.vcall( default_module, graph, forward_func_value.obj, finput).get_obj() assert(ret is None or isinstance(ret, values.Object)) def try_get_value(value) -> 'values.Value': if isinstance(value, values.Value): return value if isinstance(value, values.Object): return value.get_value() if isinstance(value, values.Attribute): return value.get_obj().get_value() if ret is None or isinstance(ret, values.NoneValue): if config.show_warnings: print('Failed to compile. output is None.') return (value_args, None, graph) ret_ = [] if isinstance(ret.get_value(), values.TupleValue): if ret.get_value().internal_value is not None: for v in ret.get_value().internal_value: assert(v is not None) ret_.append(try_get_value(v)) else: ret_ = [ret.get_value()] elif isinstance(ret, list): ret_ = [r.get_value() for r in ret] else: ret_ = [ret.get_value()] for v in value_args: graph.add_input_value(v) for v in ret_: graph.add_output_value(v) return (value_args, ret_, graph)
def convert_model(model: 'chainer.Chain', args=[]): # reset values values.reset_field_and_attributes() utils.reset_guid() values.function_converters.clear() values.builtin_function_converters.clear() values.instance_converters.clear() def instance_converter(m, i): if links_builtin.is_builtin_chainer_link(i): return links_builtin.ChainerLinkInstance(m, i) if isinstance(i, chainer.ChainList): module = values.ValueRef( values.ModuleValue(sys.modules[i.__module__])) return links_builtin.ChainerChainListInstance(module, i) if isinstance(i, chainer.Link): module = values.ValueRef( values.ModuleValue(sys.modules[i.__module__])) return links_builtin.ChainerChainInstance(module, i) return None values.instance_converters.append(instance_converter) # chainer c_variable = values.FuncValue(functions_ndarray.NDArrayFunction(), None) values.function_converters[chainer.Variable] = c_variable # chainer.functions def add_chainer_funtion(name: 'str', func, ret_value_func=None): if ret_value_func is None: f = values.FuncValue(functions_builtin.ChainerFunction(func), None) else: f = values.FuncValue( functions_builtin.ChainerFunction( func, ret_value_func=ret_value_func), None) values.function_converters[func] = f def ret_tuple(): ret = values.TupleValue() ret.vtype = values.TensorValue return ret add_chainer_funtion('relu', F.relu) add_chainer_funtion('softmax', F.softmax) add_chainer_funtion('softmax_cross_entropy', F.softmax_cross_entropy) add_chainer_funtion('pad_sequence', F.pad_sequence) add_chainer_funtion('average_pooling_2d', F.average_pooling_2d) add_chainer_funtion('unpooling_2d', F.unpooling_2d) add_chainer_funtion('reshape', F.reshape) add_chainer_funtion('split_axis', F.split_axis, ret_value_func=ret_tuple) add_chainer_funtion('hstack', F.hstack) add_chainer_funtion('vstack', F.vstack) add_chainer_funtion('stack', F.stack) add_chainer_funtion('separate', F.separate, ret_value_func=ret_tuple) add_chainer_funtion('squeeze', F.squeeze) add_chainer_funtion('swapaxes', F.swapaxes) add_chainer_funtion('dropout', F.dropout) add_chainer_funtion('concat', F.concat) add_chainer_funtion('matmul', F.matmul) add_chainer_funtion('max_pooling_2d', F.max_pooling_2d) add_chainer_funtion('resize_images', F.resize_images) add_chainer_funtion('tanh', F.tanh) add_chainer_funtion('sigmoid', F.sigmoid) add_chainer_funtion('broadcast_to', F.broadcast_to) add_chainer_funtion('expand_dims', F.expand_dims) add_chainer_funtion('local_response_normalization', F.local_response_normalization) add_chainer_funtion('mean', F.mean) add_chainer_funtion('average', F.average) add_chainer_funtion('sum', F.sum) if int(chainer.__version__[0]) >= 6: add_chainer_funtion('roi_max_pooling_2d', F.roi_max_pooling_2d) add_chainer_funtion('roi_average_pooling_2d', F.roi_average_pooling_2d) add_chainer_funtion('roi_max_align_2d', F.roi_max_align_2d) add_chainer_funtion('roi_average_align_2d', F.roi_average_align_2d) # numpy f_array = values.FuncValue(functions_ndarray.NDArrayFunction(), None) f_zeros = values.FuncValue(functions_ndarray.NDArrayZerosFunction(), None) f_full = values.FuncValue(functions_ndarray.NDArrayFullFunction(), None) f_ceil = values.FuncValue(functions_ndarray.NDArrayCeilFunction(), None) f_cumsum = values.FuncValue(functions_ndarray.NDArrayCumsumFunction(), None) f_int32 = values.FuncValue(functions_ndarray.NDArrayInt32(), None) f_float32 = values.FuncValue(functions_ndarray.NDArrayFloat32(), None) values.function_converters[np.array] = f_array values.function_converters[np.zeros] = f_zeros values.function_converters[np.full] = f_full values.function_converters[np.ceil] = f_ceil values.function_converters[np.cumsum] = f_cumsum values.function_converters[np.int32] = f_int32 values.function_converters[np.float32] = f_float32 m_range = values.FuncValue(functions_builtin.RangeFunction(), None) values.builtin_function_converters['range'] = m_range m_len = values.FuncValue(functions_builtin.LenFunction(), None) values.builtin_function_converters['len'] = m_len values.function_converters[six.moves.range] = m_range m_list = values.FuncValue(functions_builtin.ListFunction(), None) values.builtin_function_converters['list'] = m_list m_to_gpu = values.FuncValue(functions_builtin.CopyFunction(cuda.to_gpu), None) values.function_converters[cuda.to_gpu] = m_to_gpu m_to_cpu = values.FuncValue(functions_builtin.CopyFunction(cuda.to_cpu), None) values.function_converters[cuda.to_cpu] = m_to_cpu # generate default module default_module = values.ValueRef( values.ModuleValue(sys.modules[model.__module__])) model_inst = values.parse_instance(default_module, '', model) forward_func = model_inst.try_get_and_store_obj('forward', None) # convert args finput = functions.FunctionArgInput() value_args = [] ind = 0 node_input = nodes.NodeInput('input') for arg in args: varg = values.parse_instance(default_module, '', arg, None) varg.name = 'in_' + str(ind) varg.get_value().name = 'in_' + str(ind) # make value unknown varg.get_value().internal_value = None finput.inputs.append(varg) value_args.append(varg.get_value()) ind += 1 node_input.set_outputs(value_args) graph = Graph() graph.root_graph = graph graph.add_node(node_input) forward_func_value = forward_func.get_value() ret = forward_func_value.func.vcall(default_module, graph, forward_func_value.obj, finput) assert (ret is None or isinstance(ret, values.ValueRef)) def try_get_value(value) -> 'values.Value': if isinstance(value, values.Value): return value if isinstance(value, values.ValueRef): return value.get_value() if isinstance(value, values.Attribute): return value.get_ref().get_value() if ret is None or isinstance(ret, values.NoneValue): if config.show_warnings: print('Failed to compile. output is None.') return (value_args, None, graph) ret_ = [] if isinstance(ret.get_value(), values.TupleValue): if ret.get_value().internal_value is not None: for v in ret.get_value().internal_value: assert (v is not None) ret_.append(try_get_value(v)) else: ret_ = [ret.get_value()] elif isinstance(ret, list): ret_ = [r.get_value() for r in ret] else: ret_ = [ret.get_value()] for v in value_args: graph.add_input_value(v) for v in ret_: graph.add_output_value(v) return (value_args, ret_, graph)