コード例 #1
0
 def _get_tail_stats(self, X):
     """ Method to approximate the tail sigma using
     log-linear extrapolation applied to tail average period
     """
     time_pd = self._get_tail_weighted_time_period(X)
     reg = WeightedRegression(axis=3).fit(None, np.log(X.sigma_.values), None)
     sigma_ = np.exp(time_pd*reg.slope_+reg.intercept_)
     y = X.std_err_.values
     y[y == 0] = np.nan
     reg = WeightedRegression(axis=3).fit(None, np.log(y), None)
     std_err_ = np.exp(time_pd*reg.slope_+reg.intercept_)
     return sigma_, std_err_
コード例 #2
0
    def _get_tail_weighted_time_period(self, X):
        """ Method to approximate the weighted-average development age of tail
        using log-linear extrapolation

        Returns: float32
        """
        y = X.ldf_.values.copy()
        y[y <= 1] = np.nan
        reg = WeightedRegression(axis=3).fit(None, np.log(y - 1), None)
        tail = np.prod(self.ldf_.values[..., -self._ave_period[0]-1:],
                       -1, keepdims=True)
        reg = WeightedRegression(axis=3).fit(None, np.log(y - 1), None)
        time_pd = (np.log(tail-1)-reg.intercept_)/reg.slope_
        return time_pd
コード例 #3
0
    def _get_tail_stats(self, X):
        """ Method to approximate the tail sigma using
        log-linear extrapolation applied to tail average period
        """
        from chainladder.utils.utility_functions import num_to_nan

        time_pd = self._get_tail_weighted_time_period(X)
        xp = X.sigma_.get_array_module()
        reg = WeightedRegression(axis=3, xp=xp).fit(None, xp.log(X.sigma_.values), None)
        sigma_ = xp.exp(time_pd * reg.slope_ + reg.intercept_)
        y = X.std_err_.values
        y = num_to_nan(y)
        reg = WeightedRegression(axis=3, xp=xp).fit(None, xp.log(y), None)
        std_err_ = xp.exp(time_pd * reg.slope_ + reg.intercept_)
        return sigma_, std_err_
コード例 #4
0
ファイル: curve.py プロジェクト: abirr97/chainladder-python
 def _get_x(self, w, y):
     # For Exponential decay, no transformation on x is needed
     if self.curve == 'exponential':
         return None
     if self.curve == 'inverse_power':
         reg = WeightedRegression(3, False).fit(None, y, w).infer_x_w()
         return np.log(reg.x)
コード例 #5
0
 def _get_x(self, w, y):
     # For Exponential decay, no transformation on x is needed
     if self.curve == "exponential":
         return None
     if self.curve == "inverse_power":
         xp = self.ldf_.get_array_module()
         reg = WeightedRegression(3, False, xp=xp).fit(None, y, w).infer_x_w()
         return xp.log(reg.x)
コード例 #6
0
ファイル: curve.py プロジェクト: zluety/chainladder-python
    def fit(self, X, y=None, sample_weight=None):
        """Fit the model with X.

        Parameters
        ----------
        X : Triangle-like
            Set of LDFs to which the tail will be applied.
        y : Ignored
        sample_weight : Ignored

        Returns
        -------
        self : object
            Returns the instance itself.
        """
        super().fit(X, y, sample_weight)
        xp = cp.get_array_module(self.ldf_.values)
        _y = self.ldf_.values[..., :X.shape[-1] - 1].copy()
        _w = xp.zeros(_y.shape)
        if type(self.fit_period) is not slice:
            raise TypeError('fit_period must be slice.')
        else:
            _w[..., self.fit_period] = 1.0
        if self.errors == 'ignore':
            _w[_y <= 1.0] = 0
            _y[_y <= 1.0] = 1.01
        elif self.errors == 'raise' and xp.any(y < 1.0):
            raise ZeroDivisionError('Tail fit requires all LDFs to be' +
                                    ' greater than 1.0')
        _y = xp.log(_y - 1)
        n_obs = X.shape[-1] - 1
        k, v = X.shape[:2]
        _x = self._get_x(_w, _y)
        # Get LDFs
        coefs = WeightedRegression(axis=3).fit(_x, _y, _w)
        slope, intercept = coefs.slope_, coefs.intercept_
        extrapolate = xp.cumsum(
            xp.ones(tuple(list(_y.shape)[:-1] +
                          [self.extrap_periods + n_obs])), -1)
        tail = self._predict_tail(slope, intercept, extrapolate)
        if self.attachment_age:
            attach_idx = xp.min(xp.where(X.ddims >= self.attachment_age))
        else:
            attach_idx = len(X.ddims) - 1
        self.ldf_.values = xp.concatenate(
            (self.ldf_.values[..., :attach_idx], tail[..., attach_idx:]), -1)
        obj = Development().fit_transform(X) if 'ldf_' not in X else X
        sigma, std_err = self._get_tail_stats(obj)
        self.sigma_.values[..., -1] = sigma[..., -1]
        self.std_err_.values[..., -1] = std_err[..., -1]
        self.slope_ = slope
        self.intercept_ = intercept
        self.cdf_ = DevelopmentBase._get_cdf(self)
        return self
コード例 #7
0
ファイル: curve.py プロジェクト: abirr97/chainladder-python
    def fit(self, X, y=None, sample_weight=None):
        """Fit the model with X.

        Parameters
        ----------
        X : Triangle-like
            Set of LDFs to which the tail will be applied.
        y : Ignored
        sample_weight : Ignored

        Returns
        -------
        self : object
            Returns the instance itself.
        """
        super().fit(X, y, sample_weight)
        _y = self.ldf_.values[..., :-1].copy()
        _w = np.zeros(_y.shape)
        if type(self.fit_period) is not slice:
            raise TypeError('fit_period must be slice.')
        else:
            _w[..., self.fit_period] = 1.0
        if self.errors == 'ignore':
            _w[_y <= 1.0] = 0
            _y[_y <= 1.0] = 1.01
        elif self.errors == 'raise' and np.any(y < 1.0):
            raise ZeroDivisionError('Tail fit requires all LDFs to be \
                                     greater than 1.0')
        _y = np.log(_y - 1)
        n_obs = X.shape[-1] - 1
        k, v = X.shape[:2]
        _x = self._get_x(_w, _y)
        # Get LDFs
        coefs = WeightedRegression(axis=3).fit(_x, _y, _w)
        slope, intercept = coefs.slope_, coefs.intercept_
        extrapolate = np.cumsum(
            np.ones(tuple(list(_y.shape)[:-1] + [self.extrap_periods])),
            -1) + n_obs
        tail = self._predict_tail(slope, intercept, extrapolate)
        self.ldf_.values = self.ldf_.values[..., :-tail.shape[-1]]
        self.ldf_.values = np.concatenate((self.ldf_.values, tail), -1)
        if X.__dict__.get('ldf_', None) is None:
            obj = Development().fit_transform(X)
        else:
            obj = X
        sigma, std_err = self._get_tail_stats(obj)
        self.sigma_.values[..., -1] = sigma[..., -1]
        self.std_err_.values[..., -1] = std_err[..., -1]
        self.slope_ = slope
        self.intercept_ = intercept
        self.cdf_ = DevelopmentBase._get_cdf(self)
        return self
コード例 #8
0
ファイル: base.py プロジェクト: attiguyas/chainladder-python
    def _get_tail_stats(self, X):
        """ Method to approximate the tail sigma using
        log-linear extrapolation applied to tail average period
        """
        from chainladder.utils.utility_functions import num_to_nan
        if not hasattr(X, 'sigma_'):
            self.sigma_ = None
            self.std_err_ = None
        else:
            time_pd = self._get_tail_weighted_time_period(X)
            xp = X.sigma_.get_array_module()
            reg = WeightedRegression(axis=3,
                                     xp=xp).fit(None, xp.log(X.sigma_.values),
                                                None)
            sigma_ = xp.exp(time_pd * reg.slope_ + reg.intercept_)
            y = X.std_err_.values
            y = num_to_nan(y)
            reg = WeightedRegression(axis=3, xp=xp).fit(None, xp.log(y), None)
            std_err_ = xp.exp(time_pd * reg.slope_ + reg.intercept_)

            self.sigma_.values = xp.concatenate(
                (self.sigma_.values[..., :-1], sigma_[..., -1:]), axis=-1)
            self.std_err_.values = xp.concatenate(
                (self.std_err_.values[..., :-1], std_err_[..., -1:]), axis=-1)
コード例 #9
0
    def fit(self, X, y=None, sample_weight=None):
        """Fit the model with X.

        Parameters
        ----------
        X : Triangle-like
            Set of LDFs to which the munich adjustment will be applied.
        y : None
            Ignored
        sample_weight :
            Ignored

        Returns
        -------
        self : object
            Returns the instance itself.
        """
        if X.array_backend == "sparse":
            X = X.set_backend("numpy")
        else:
            X = X.copy()
        xp = X.get_array_module()
        from chainladder.utils.utility_functions import num_to_nan

        if type(X.ddims) != np.ndarray:
            raise ValueError(
                "Triangle must be expressed with development lags")
        if self.fillna:
            tri_array = num_to_nan((X + self.fillna).values)
        else:
            tri_array = num_to_nan(X.values.copy())
        if type(self.average) is not list:
            self.average_ = np.array([self.average] *
                                     (tri_array.shape[-1] - 1))
        else:
            self.average_ = np.array(self.average)
        if type(self.n_periods) is not list:
            n_periods = [self.n_periods] * (tri_array.shape[-1] - 1)
        else:
            n_periods = self.n_periods
        n_periods = np.array(n_periods)
        self.n_periods_ = n_periods
        weight_dict = {"regression": 0, "volume": 1, "simple": 2}
        x, y = tri_array[..., :-1], tri_array[..., 1:]
        val = xp.nan_to_num(
            xp.array([weight_dict.get(item, item)
                      for item in self.average_])[None, None, None] *
            (y * 0 + 1))
        link_ratio = y / x
        self.w_ = xp.array(
            self._assign_n_periods_weight(X) *
            self._drop_adjustment(X, link_ratio))
        w = self.w_ / (x**(val))
        params = WeightedRegression(axis=2, thru_orig=True, xp=xp).fit(x, y, w)
        if self.n_periods != 1:
            params = params.sigma_fill(self.sigma_interpolation)
        else:
            warnings.warn("Setting n_periods=1 does not allow enough degrees "
                          "of freedom to support calculation of all regression"
                          " statistics.  Only LDFs have been calculated.")
        params.std_err_ = xp.nan_to_num(params.std_err_) + xp.nan_to_num(
            (1 - xp.nan_to_num(params.std_err_ * 0 + 1)) * params.sigma_ /
            xp.swapaxes(xp.sqrt(x**(2 - val))[..., 0:1, :], -1, -2))
        params = xp.concatenate(
            (params.slope_, params.sigma_, params.std_err_), 3)
        params = xp.swapaxes(params, 2, 3)
        self.ldf_ = self._param_property(X, params, 0)
        self.sigma_ = self._param_property(X, params, 1)
        self.std_err_ = self._param_property(X, params, 2)

        resid = -X.iloc[..., :-1] * self.ldf_.values + X.iloc[..., 1:].values

        std = xp.sqrt((1 / num_to_nan(w)) * (self.sigma_**2).values)
        resid = resid / std
        self.std_residuals_ = resid[resid.valuation < X.valuation_date]
        return self
コード例 #10
0
    def fit(self, X, y=None, sample_weight=None):
        """Fit the model with X.

        Parameters
        ----------
        X : Triangle-like
            Set of LDFs to which the tail will be applied.
        y : Ignored
        sample_weight : Ignored

        Returns
        -------
        self : object
            Returns the instance itself.
        """
        from chainladder.utils.utility_functions import num_to_nan

        if X.array_backend == "sparse":
            X = X.set_backend("numpy")
        else:
            X = X.copy()
        xp = X.get_array_module()
        if type(self.fit_period) == slice:
            warnings.warn(
                "Slicing for fit_period is deprecated and will be removed. Please use a tuple (start_age, end_age)."
            )
            fit_period = self.fit_period
        else:
            grain = {"Y": 12, "Q": 3, "M": 1}[X.development_grain]
            start = (None if self.fit_period[0] is None else
                     int(self.fit_period[0] / grain - 1))
            end = (None if self.fit_period[1] is None else
                   int(self.fit_period[1] / grain - 1))
            fit_period = slice(start, end, None)
        super().fit(X, y, sample_weight)
        xp = self.ldf_.get_array_module()
        _y = self.ldf_.values[..., :X.shape[-1] - 1].copy()
        _w = xp.zeros(_y.shape)
        _w[..., fit_period] = 1.0
        if self.reg_threshold[0] is None:
            warnings.warn("Lower threshold for ldfs not set. Lower threshold will be set to 1.0 to ensure" \
                          "valid inputs for regression.")
            lower_threshold = 1
        elif self.reg_threshold[0] < 1:
            warnings.warn("Lower threshold for ldfs set too low (<1). Lower threshold will be set to 1.0 to ensure" \
                          "valid inputs for regression.")
            lower_threshold = 1
        else:
            lower_threshold = self.reg_threshold[0]
        if self.reg_threshold[1] is not None:
            if self.reg_threshold[1] <= lower_threshold:
                warnings.warn(
                    "Can't set upper threshold for ldfs below lower threshold. Upper threshold will be set to 'None'."
                )
                upper_threshold = None
            else:
                upper_threshold = self.reg_threshold[1]
        else:
            upper_threshold = self.reg_threshold[1]
        if self.errors == "ignore":
            if upper_threshold is None:
                _w[_y <= lower_threshold] = 0
                _y[_y <= lower_threshold] = 1.01
            else:
                _w[(_y <= lower_threshold) | (_y > upper_threshold)] = 0
                _y[(_y <= lower_threshold) | (_y > upper_threshold)] = 1.01
        elif self.errors == "raise" and xp.any(y < 1.0):
            raise ZeroDivisionError(
                "Tail fit requires all LDFs to be greater than 1.0")
        _y = xp.log(_y - 1)
        n_obs = X.shape[-1] - 1
        k, v = X.shape[:2]
        _x = self._get_x(_w, _y)
        # Get LDFs
        coefs = WeightedRegression(axis=3, xp=xp).fit(_x, _y, _w)
        self._slope_, self._intercept_ = coefs.slope_, coefs.intercept_
        extrapolate = xp.cumsum(
            xp.ones(tuple(list(_y.shape)[:-1] +
                          [self.extrap_periods + n_obs])), -1)
        tail = self._predict_tail(extrapolate)
        if self.attachment_age:
            attach_idx = xp.min(xp.where(X.ddims >= self.attachment_age))
        else:
            attach_idx = len(X.ddims) - 1
        self.ldf_.values = xp.concatenate(
            (self.ldf_.values[..., :attach_idx], tail[..., attach_idx:]), -1)
        obj = Development().fit_transform(X) if "ldf_" not in X else X
        self._get_tail_stats(obj)
        return self
コード例 #11
0
    def fit(self, X, y=None, sample_weight=None):
        """Fit the model with X.

        Parameters
        ----------
        X : Triangle-like
            Set of LDFs to which the munich adjustment will be applied.
        y : Ignored
        sample_weight : Ignored

        Returns
        -------
        self : object
            Returns the instance itself.
        """
        if X.array_backend == 'sparse':
            X = X.set_backend('numpy')
        else:
            X = copy.deepcopy(X)
        xp = X.get_array_module()
        from chainladder.utils.utility_functions import num_to_nan
        if (type(X.ddims) != np.ndarray):
            raise ValueError(
                'Triangle must be expressed with development lags')
        if self.fillna:
            tri_array = num_to_nan((X + self.fillna).values)
        else:
            tri_array = num_to_nan(X.values.copy())
        if type(self.average) is not list:
            average = [self.average] * (tri_array.shape[-1] - 1)
        else:
            average = self.average
        average = np.array(average)
        self.average_ = average
        if type(self.n_periods) is not list:
            n_periods = [self.n_periods] * (tri_array.shape[-1] - 1)
        else:
            n_periods = self.n_periods
        n_periods = np.array(n_periods)
        self.n_periods_ = n_periods
        weight_dict = {'regression': 0, 'volume': 1, 'simple': 2}
        x, y = tri_array[..., :-1], tri_array[..., 1:]
        val = xp.array([weight_dict.get(item.lower(), 1) for item in average])
        for i in [2, 1, 0]:
            val = xp.repeat(val[None], tri_array.shape[i], axis=0)
        val = xp.nan_to_num(val * (y * 0 + 1))
        link_ratio = y / x
        self.w_ = xp.array(
            self._assign_n_periods_weight(X) *
            self._drop_adjustment(X, link_ratio))
        w = self.w_ / (x**(val))
        params = WeightedRegression(axis=2, thru_orig=True, xp=xp).fit(x, y, w)
        if self.n_periods != 1:
            params = params.sigma_fill(self.sigma_interpolation)
        else:
            warnings.warn('Setting n_periods=1 does not allow enough degrees '
                          'of freedom to support calculation of all regression'
                          ' statistics.  Only LDFs have been calculated.')
        params.std_err_ = xp.nan_to_num(params.std_err_) + \
            xp.nan_to_num(
                (1-xp.nan_to_num(params.std_err_*0+1)) *
                params.sigma_ /
                xp.swapaxes(xp.sqrt(x**(2-val))[..., 0:1, :], -1, -2))
        params = xp.concatenate(
            (params.slope_, params.sigma_, params.std_err_), 3)
        params = xp.swapaxes(params, 2, 3)
        self.ldf_ = self._param_property(X, params, 0)
        self.sigma_ = self._param_property(X, params, 1)
        self.std_err_ = self._param_property(X, params, 2)
        return self
コード例 #12
0
    def fit(self, X, y=None, sample_weight=None):
        """Fit the model with X.

        Parameters
        ----------
        X : Triangle-like
            Set of LDFs to which the tail will be applied.
        y : Ignored
        sample_weight : Ignored

        Returns
        -------
        self : object
            Returns the instance itself.
        """

        if type(self.fit_period) == slice:
            warnings.warn(
                "Slicing for fit_period is deprecated and will be removed. Please use a tuple (start_age, end_age)."
            )
            fit_period = self.fit_period
        else:
            grain = {'Y': 12, 'Q': 3, 'M': 1}[X.development_grain]
            start = None if self.fit_period[0] is None else int(
                self.fit_period[0] / grain - 1)
            end = None if self.fit_period[1] is None else int(
                self.fit_period[1] / grain - 1)
            fit_period = slice(start, end, None)
        super().fit(X, y, sample_weight)
        xp = cp.get_array_module(self.ldf_.values)
        _y = self.ldf_.values[..., :X.shape[-1] - 1].copy()
        _w = xp.zeros(_y.shape)
        _w[..., fit_period] = 1.0
        if self.errors == 'ignore':
            _w[_y <= 1.0] = 0
            _y[_y <= 1.0] = 1.01
        elif self.errors == 'raise' and xp.any(y < 1.0):
            raise ZeroDivisionError(
                'Tail fit requires all LDFs to be greater than 1.0')
        _y = xp.log(_y - 1)
        n_obs = X.shape[-1] - 1
        k, v = X.shape[:2]
        _x = self._get_x(_w, _y)
        # Get LDFs
        coefs = WeightedRegression(axis=3).fit(_x, _y, _w)
        self._slope_, self._intercept_ = coefs.slope_, coefs.intercept_
        extrapolate = xp.cumsum(
            xp.ones(tuple(list(_y.shape)[:-1] +
                          [self.extrap_periods + n_obs])), -1)
        tail = self._predict_tail(extrapolate)
        if self.attachment_age:
            attach_idx = xp.min(xp.where(X.ddims >= self.attachment_age))
        else:
            attach_idx = len(X.ddims) - 1
        self.ldf_.values = xp.concatenate(
            (self.ldf_.values[..., :attach_idx], tail[..., attach_idx:]), -1)
        obj = Development().fit_transform(X) if 'ldf_' not in X else X
        sigma, std_err = self._get_tail_stats(obj)
        self.sigma_.values[..., -1] = sigma[..., -1]
        self.std_err_.values[..., -1] = std_err[..., -1]
        return self
コード例 #13
0
    def fit(self, X, y=None, sample_weight=None):
        """Fit the model with X.

        Parameters
        ----------
        X : Triangle-like
            Set of LDFs to which the munich adjustment will be applied.
        y : None
            Ignored
        sample_weight :
            Ignored

        Returns
        -------
        self : object
            Returns the instance itself.
        """
        from chainladder.utils.utility_functions import num_to_nan

        # Validate inputs
        if X.is_cumulative == False:
            obj = self._set_fit_groups(X).incr_to_cum().val_to_dev().copy()
        else:
            obj = self._set_fit_groups(X).val_to_dev().copy()
        xp = obj.get_array_module()

        # Make sure it is a dev tri
        if type(obj.ddims) != np.ndarray:
            raise ValueError("Triangle must be expressed with development lags")
        # validate hyperparameters
        if self.fillna:
            tri_array = num_to_nan((obj + self.fillna).values)
        else:
            tri_array = num_to_nan(obj.values.copy())
        self.average_ = np.array(
            self._validate_axis_assumption(self.average, obj.development[:-1]))
        n_periods_ = self._validate_axis_assumption(self.n_periods, obj.development[:-1])
        weight_dict = {"regression": 0, "volume": 1, "simple": 2}
        x, y = tri_array[..., :-1], tri_array[..., 1:]
        exponent = xp.array([weight_dict.get(item, item) for item in self.average_])
        exponent = xp.nan_to_num(exponent[None, None, None] * (y * 0 + 1))
        link_ratio = y / x
        self.w_ = (self._assign_n_periods_weight(obj, n_periods_) *
                   self._drop_adjustment(obj, link_ratio))
        w = self.w_ / (x ** (exponent))
        params = WeightedRegression(axis=2, thru_orig=True, xp=xp).fit(x, y, w)
        if self.n_periods != 1:
            params = params.sigma_fill(self.sigma_interpolation)
        else:
            warnings.warn(
                "Setting n_periods=1 does not allow enough degrees "
                "of freedom to support calculation of all regression"
                " statistics.  Only LDFs have been calculated."
            )
        params.std_err_ = xp.nan_to_num(params.std_err_) + xp.nan_to_num(
            (1 - xp.nan_to_num(params.std_err_ * 0 + 1))
            * params.sigma_
            / xp.swapaxes(xp.sqrt(x ** (2 - exponent))[..., 0:1, :], -1, -2)
        )
        params = xp.concatenate((params.slope_, params.sigma_, params.std_err_), 3)
        params = xp.swapaxes(params, 2, 3)
        self.ldf_ = self._param_property(obj, params, 0)
        self.sigma_ = self._param_property(obj, params, 1)
        self.std_err_ = self._param_property(obj, params, 2)

        resid = -obj.iloc[..., :-1] * self.ldf_.values + obj.iloc[..., 1:].values

        std = xp.sqrt((1/num_to_nan(w))*(self.sigma_**2).values)
        resid = resid/std
        self.std_residuals_ = resid[resid.valuation < obj.valuation_date]
        return self