コード例 #1
0
def translate_model(jobqueue, resultqueue, model, options, k, normalize,
                    build_sampler, gen_sample, init_params, model_id, silent):

    from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams
    trng = RandomStreams(1234)

    # allocate model parameters
    params = init_params(options)

    # load model parameters and set theano shared variables
    params = load_params(model, params)
    tparams = init_tparams(params)

    # word index
    use_noise = theano.shared(numpy.float32(0.))
    f_init, f_next = build_sampler(tparams, options, trng, use_noise)

    def _translate(seq):
        use_noise.set_value(0.)
        # sample given an input sequence and obtain scores
        # NOTE : if seq length too small, do something about it
        # beam size is 5 by default
        sample, score = gen_sample(tparams,
                                   f_init,
                                   f_next,
                                   numpy.array(seq).reshape([len(seq), 1]),
                                   options,
                                   trng=trng,
                                   k=k,
                                   maxlen=500,
                                   stochastic=False,
                                   argmax=False)

        # normalize scores according to sequence lengths
        if normalize:
            lengths = numpy.array([len(s) for s in sample])
            score = score / lengths

        sidx = numpy.argmin(score)
        return sample[sidx]

    while jobqueue:
        req = jobqueue.pop(0)

        idx, x = req[0], req[1]
        if not silent:
            print "sentence", idx, model_id
        seq = _translate(x)
        #print 'Seq', seq, 'Score:', score

        resultqueue.append((idx, seq))
    return
コード例 #2
0
ファイル: translate.py プロジェクト: zshwuhan/dl4mt-cdec
def translate_model(queue, rqueue, pid, model, options, k, normalize):

    from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams
    trng = RandomStreams(1234)

    # allocate model parameters
    params = init_params(options)

    # load model parameters and set theano shared variables
    params = load_params(model, params)
    tparams = init_tparams(params)

    # word index
    use_noise = theano.shared(numpy.float32(0.))
    f_init, f_next = build_sampler(tparams, options, trng, use_noise)

    def _translate(seq):
        use_noise.set_value(0.)
        # sample given an input sequence and obtain scores
        sample, score = gen_sample(tparams,
                                   f_init,
                                   f_next,
                                   numpy.array(seq).reshape([len(seq), 1]),
                                   options,
                                   trng=trng,
                                   k=k,
                                   maxlen=500,
                                   stochastic=False,
                                   argmax=False)

        # normalize scores according to sequence lengths
        if normalize:
            lengths = numpy.array([len(s) for s in sample])
            score = score / lengths
        sidx = numpy.argmin(score)
        return sample[sidx]

    while True:
        req = queue.get()
        if req is None:
            break

        idx, x = req[0], req[1]
        print pid, '-', idx
        seq = _translate(x)

        rqueue.put((idx, seq))

    return
コード例 #3
0
def main(model,
         src_dict,
         target_dict,
         source_file,
         target_file,
         saveto,
         source_word_level=1,
         target_word_level=0,
         valid_batch_size=128,
         n_words_src=302,
         n_words=302):
    from char_base import (init_params, build_model, build_sampler)
    from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams
    from nmt import (pred_probs, prepare_data)

    # load model model_options
    pkl_file = model.split('.')[0] + '.pkl'
    with open(pkl_file, 'rb') as f:
        options = pkl.load(f)

    trng = RandomStreams(1234)

    # allocate model parameters
    params = init_params(options)

    # load model parameters and set theano shared variables
    params = load_params(model, params)

    # create shared variables for parameters
    tparams = init_tparams(params)

    trng, use_noise, \
    x, x_mask, y, y_mask, \
    opt_ret, \
    cost = \
        build_model(tparams, options)
    inps = [x, x_mask, y, y_mask]

    print 'Building sampler...\n',
    f_init, f_next = build_sampler(tparams, options, trng, use_noise)
    print 'Done'

    # before any regularizer
    print 'Building f_log_probs...',
    f_log_probs = theano.function(inps, cost)
    print 'Done'

    print('Preparing dataset...')
    dataset = TextIterator(source=source_file,
                           target=target_file,
                           source_dict=src_dict,
                           target_dict=target_dict,
                           n_words_source=n_words_src,
                           n_words_target=n_words,
                           source_word_level=source_word_level,
                           target_word_level=target_word_level,
                           batch_size=valid_batch_size,
                           sort_size=sort_size)

    print('Predicting probs...')
    log_probs = pred_probs(f_log_probs,
                           prepare_data,
                           options,
                           dataset,
                           verboseFreq=10000)
    print('Done...')
    output_file = open(saveto, 'w')
    pwd_cnt = 0
    for line in open(target_file):
        output_file.writelines(line.rstrip() + '\t' +
                               str(1.0 / (math.e**log_probs[pwd_cnt])) + '\n')
        pwd_cnt += 1
    """
    for prob in log_probs:
        output_file.writelines(str(prob) + '\n')
    """
    output_file.flush()
    output_file.close()
    print('Evaluation finished...')