コード例 #1
0
ファイル: chat.py プロジェクト: NEUChatbot/new-model
    def __init__(self):
        # Read the hyperparameters and configure paths
        checkpoint_filepath = os.path.join(
            basedir, 'models/best_weights_training.ckpt')
        checkpoint = os.path.basename(checkpoint_filepath)
        model_dir = os.path.dirname(checkpoint_filepath)
        hparams = Hparams()

        # Load the vocabulary
        print()
        print("Loading vocabulary...")

        input_vocabulary = Vocabulary.load()
        output_vocabulary = input_vocabulary
        # Create the model
        print("Initializing model...")
        print()
        model = ChatbotModel(mode="infer",
                             model_hparams=hparams.model_hparams,
                             input_vocabulary=input_vocabulary,
                             output_vocabulary=output_vocabulary,
                             model_dir=model_dir)

        # Load the weights
        print()
        print("Loading model weights...")
        model.load(checkpoint)
        self.model = model

        # Setting up the chat
        self.chatlog_filepath = path.join(
            model_dir, "chat_logs", "chatlog_{0}.txt".format(
                datetime.datetime.now().strftime("%Y%m%d_%H%M%S")))
        self.chat_settings = ChatSettings(hparams.inference_hparams)
        chat_command_handler.print_commands()
コード例 #2
0
def chat_fun():
    terminate_chat = False
    reload_model = False
    while not terminate_chat:
        #Create the model
        print()
        print("Initializing model..."
              if not reload_model else "Re-initializing model...")
        print()
        with ChatbotModel(mode="infer",
                          model_hparams=chat_settings.model_hparams,
                          input_vocabulary=input_vocabulary,
                          output_vocabulary=output_vocabulary,
                          model_dir=model_dir) as model:

            #Load the weights
            print()
            print("Loading model weights...")
            print()
            model.load(checkpoint)

            #Show the commands
            if not reload_model:
                chat_command_handler.print_commands()

            while True:
                #Get the input and check if it is a question or a command, and execute if it is a command
                question = input("You: ")
                is_command, terminate_chat, reload_model = chat_command_handler.handle_command(
                    question, model, chat_settings)
                if terminate_chat or reload_model:
                    break
                elif is_command:
                    continue
                else:
                    #If it is not a command (it is a question), pass it on to the chatbot model to get the answer
                    question_with_history, answer = model.chat(
                        question, chat_settings)

                    #Print the answer or answer beams and log to chat log
                    if chat_settings.show_question_context:
                        print("Question with history (context): {0}".format(
                            question_with_history))
                        print("\n1st if")

                    if chat_settings.show_all_beams:
                        for i in range(len(answer)):
                            print("ChatBot (Beam {0}): {1}".format(
                                i, answer[i]))
                            print("\n2nd if")
                    else:
                        print("ChatBot: {0}".format(answer))
                        print("\n else")

                    print()

                    if chat_settings.inference_hparams.log_chat:
                        chat_command_handler.append_to_chatlog(
                            chatlog_filepath, question, answer)
コード例 #3
0
                  model_hparams=hparams.model_hparams,
                  input_vocabulary=input_vocabulary,
                  output_vocabulary=output_vocabulary,
                  model_dir=model_dir) as model:

    #Load the weights
    print()
    print("Loading model weights...")
    model.load(checkpoint)

    # Setting up the chat
    chatlog_filepath = path.join(
        model_dir, "chat_logs", "chatlog_{0}.txt".format(
            datetime.datetime.now().strftime("%Y%m%d_%H%M%S")))
    chat_settings = ChatSettings(hparams.inference_hparams)
    chat_command_handler.print_commands()
    while (True):
        #Get the input and check if it is a question or a command, and execute if it is a command
        question = input("You: ")
        is_command, terminate_chat = chat_command_handler.handle_command(
            question, model, chat_settings)
        if terminate_chat:
            break
        elif is_command:
            continue
        else:
            #If it is not a command (it is a question), pass it on to the chatbot model to get the answer
            question_with_history, answer = model.chat(question, chat_settings)

            #Print the answer or answer beams and log to chat log
            if chat_settings.show_question_context:
コード例 #4
0
def serve_chat(checkpointfile, port):

    api = Api(app)

    #Read the hyperparameters and configure paths
    model_dir, hparams, checkpoint = general_utils.initialize_session_server(checkpointfile)

    #Load the vocabulary
    print()
    print ("Loading vocabulary...")
    if hparams.model_hparams.share_embedding:
        shared_vocab_filepath = path.join(model_dir, Vocabulary.SHARED_VOCAB_FILENAME)
        input_vocabulary = Vocabulary.load(shared_vocab_filepath)
        output_vocabulary = input_vocabulary
    else:
        input_vocab_filepath = path.join(model_dir, Vocabulary.INPUT_VOCAB_FILENAME)
        input_vocabulary = Vocabulary.load(input_vocab_filepath)
        output_vocab_filepath = path.join(model_dir, Vocabulary.OUTPUT_VOCAB_FILENAME)
        output_vocabulary = Vocabulary.load(output_vocab_filepath)

    #Create the model
    print ("Initializing model...")
    print()
    with ChatbotModel(mode = "infer",
                      model_hparams = hparams.model_hparams,
                      input_vocabulary = input_vocabulary,
                      output_vocabulary = output_vocabulary,
                      model_dir = model_dir) as model:

        #Load the weights
        print()
        print ("Loading model weights...")
        model.load(checkpoint)

        # Setting up the chat
        chatlog_filepath = path.join(model_dir, "chat_logs", "web_chatlog_{0}.txt".format(datetime.datetime.now().strftime("%Y%m%d_%H%M%S")))
        chat_settings = ChatSettings(hparams.model_hparams, hparams.inference_hparams)
        chat_command_handler.print_commands()
        
        class Answer(Resource):
            def get(self, question):
                is_command, terminate_chat, _ = chat_command_handler.handle_command(question, model, chat_settings)
                if terminate_chat:
                    answer = "[Can't terminate from http request]"
                elif is_command:
                    answer = "[Command processed]"
                else:
                    #If it is not a command (it is a question), pass it on to the chatbot model to get the answer
                    _, answer = model.chat(question, chat_settings)
                    
                    if chat_settings.inference_hparams.log_chat:
                        chat_command_handler.append_to_chatlog(chatlog_filepath, question, answer)

                return answer

        class UI(Resource):
            def get(self):
                return send_from_directory(".", "chat_ui.html")

        api.add_resource(Answer, "/chat/<string:question>")
        api.add_resource(UI, "/chat_ui/")
        app.run(debug=False, port=port)