コード例 #1
0
def bot_ui():
    corp_dir = os.path.join(PROJECT_ROOT, 'Data', 'Corpus')
    knbs_dir = os.path.join(PROJECT_ROOT, 'Data', 'KnowledgeBase')
    res_dir = os.path.join(PROJECT_ROOT, 'Data', 'Result')

    with tf.Session() as sess:
        predictor = BotPredictor(sess,
                                 corpus_dir=corp_dir,
                                 knbase_dir=knbs_dir,
                                 result_dir=res_dir,
                                 result_file='basic')
        # This command UI has a single chat session only
        session_id = predictor.session_data.add_session()

        print("Welcome to Chat with ChatLearner!")
        print("Type exit and press enter to end the conversation.")
        # Waiting from standard input.
        sys.stdout.write("> ")
        sys.stdout.flush()
        question = sys.stdin.readline()
        while question:
            if question.strip() == 'exit':
                print("Thank you for using ChatLearner. Goodbye.")
                break

            print(predictor.predict(session_id, question))
            print("> ", end="")
            sys.stdout.flush()
            question = sys.stdin.readline()
コード例 #2
0
def test_demo():
    print("# Creating TF session ...")

    corp_dir = os.path.join(PROJECT_ROOT, 'Data', 'Corpus')
    knbs_dir = os.path.join(PROJECT_ROOT, 'Data', 'KnowledgeBase')
    res_dir = os.path.join(PROJECT_ROOT, 'Data', 'Result')

    test_dir = os.path.join(PROJECT_ROOT, 'Data', 'Test')
    in_file = os.path.join(test_dir, 'samples.txt')
    out_file = os.path.join(test_dir, 'responses.txt')

    with tf.Session() as sess:
        predictor = BotPredictor(sess, corpus_dir=corp_dir, knbase_dir=knbs_dir,
                                 result_dir=res_dir, result_file='basic')
        session_id = predictor.session_data.add_session()

        print("# Prediction started ...")
        t0 = time.time()
        with open(in_file, 'r') as f_in:
            with open(out_file, 'a') as f_out:
                f_out.write(get_header())
                for line in f_in:
                    sentence = line.strip()
                    if not sentence or sentence.startswith("#=="):
                        continue
                    f_out.write("> {}\n".format(sentence))
                    f_out.write("{}\n\n".format(predictor.predict(session_id, sentence)))

        t1 = time.time()
        print("# Prediction completed. Time spent on prediction: {:4.2f} seconds".format(t1-t0))
コード例 #3
0
def bot_ui(resultfolder):
    corp_dir = os.path.join(PROJECT_ROOT, 'Data', 'Corpus')
    knbs_dir = os.path.join(PROJECT_ROOT, 'Data', 'KnowledgeBase')
    res_dir = os.path.join(PROJECT_ROOT, 'Data', resultfolder)

    with tf.Session() as sess:
        predictor = BotPredictor(sess,
                                 corpus_dir=corp_dir,
                                 knbase_dir=knbs_dir,
                                 result_dir=res_dir,
                                 hparams_dir=res_dir)

        print("Welcome to Chat with ChatLearner!")
        print("Type exit and press enter to end the conversation.")
        # Waiting from standard input.
        sys.stdout.write("> ")
        sys.stdout.flush()
        sentence = sys.stdin.readline()
        while sentence:
            if not sentence.strip():
                continue

            if sentence.strip() == 'exit':
                print("Thank you for using ChatLearner. Goodbye.")
                break

            print(predictor.predict(sentence))
            print("> ", end="")
            sys.stdout.flush()
            sentence = sys.stdin.readline()
コード例 #4
0
ファイル: botui.py プロジェクト: Nicusor97/MSEP
def bot_ui():
    corp_dir = os.path.join(PROJECT_ROOT, 'Data', 'Corpus')
    knbs_dir = os.path.join(PROJECT_ROOT, 'Data', 'KnowledgeBase')
    res_dir = os.path.join(PROJECT_ROOT, 'Data', 'Result')
    with tf.Session() as sess:
        predictor = BotPredictor(sess,
                                 corpus_dir=corp_dir,
                                 knbase_dir=knbs_dir,
                                 result_dir=res_dir,
                                 result_file='basic')
        # This command UI has a single chat session only
        session_id = predictor.session_data.add_session()

        print("Type exit and press enter to end the conversation.")
        # Waiting from standard input.
        sys.stdout.write(
            "Say something to be recognized by the google cloud API voices\n")
        sys.stdout.write("> ")
        sys.stdout.flush()
        # question = recognize_voice()
        question = sys.stdin.readline()
        while question:
            if question.strip() == 'exit':
                break
            # import pdb
            # pdb.set_trace()
            result = re.sub(r'_nl_|_np_', '\n',
                            predictor.predict(session_id, question)).strip()
            print(result)
            text_to_speech_recognizer(result)
            # print(re.sub(r'_nl_|_np_', '\n', predictor.predict(session_id, question)).strip())
            print("> ", end="")
            sys.stdout.flush()
            question = sys.stdin.readline()
コード例 #5
0
def bot_ui():
    corp_dir = os.path.join(PROJECT_ROOT, 'Data', 'Corpus')
    knbs_dir = os.path.join(PROJECT_ROOT, 'Data', 'KnowledgeBase')
    res_dir = os.path.join(PROJECT_ROOT, 'Data', 'Result')

    with tf.Session() as sess:
        predictor = BotPredictor(sess,
                                 corpus_dir=corp_dir,
                                 knbase_dir=knbs_dir,
                                 result_dir=res_dir,
                                 result_file='basic')
        # This command UI has a single chat session only
        session_id = predictor.session_data.add_session()
        # Waiting from standard input.
        question = ''.join(sys.argv[1:])
        #print(question)#, file=sys.stdout)
        #print("\n")
        print(
            re.sub(r'_nl_|_np_', ' ', predictor.predict(session_id,
                                                        question)).strip())
コード例 #6
0
ファイル: chatServer.py プロジェクト: jellyear/HeroBot
def main():

    corp_dir = os.path.join(PROJECT_ROOT, 'Data', 'Corpus')
    knbs_dir = os.path.join(PROJECT_ROOT, 'Data', 'KnowledgeBase')
    res_dir = os.path.join(PROJECT_ROOT, 'Data', 'Result')

    with tf.Session() as sess:
        predictor = BotPredictor(sess,
                                 corpus_dir=corp_dir,
                                 knbase_dir=knbs_dir,
                                 result_dir=res_dir,
                                 result_file='basic-32334')

        sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
        host = '127.0.0.1'
        port = int(2000)
        sock.bind((host, port))
        sock.listen(1)
        print("chatServer Start...\n")
        while True:
            connection, client_addr = sock.accept()
            # print(connection, client_addr)
            data = connection.recv(1024)
            data = data.decode("utf-8")
            print("data > " + data)

            # This command UI has a single chat session only
            session_id = predictor.session_data.add_session()
            question = data
            if question.strip() == 'exit':
                print("Thank you for using HeroBot. Goodbye.")
                break
            answer = predictor.predict(session_id, question)
            print("answ > " + answer)
            connection.sendall(answer.encode("utf-8"))
            connection.close()
        sock.close()