コード例 #1
0
    if 'yes' in text.lower():
        return False
    elif 'no' in text.lower():
        return True
    else:
        print('Please type either "Yes" or "No"')
        return get_feedback()


print("Type something to begin...")

# The following loop will execute each time the user enters input
while True:
    try:
        input_statement = bot.input.process_input_statement()
        statement, response = bot.generate_response(input_statement, CONVERSATION_ID)

        bot.output.process_response(response)
        print('\n Is "{}" a coherent response to "{}"? \n'.format(response, input_statement))
        if get_feedback():
            print("please input the correct one")
            response1 = bot.input.process_input_statement()
            bot.learn_response(response1, input_statement)
            bot.storage.add_to_conversation(CONVERSATION_ID, statement, response1)
            print("Responses added to bot!")

    # Press ctrl-c or ctrl-d on the keyboard to exit
    except (KeyboardInterrupt, EOFError, SystemExit):
        break
コード例 #2
0
        table = str.maketrans('', '', string.punctuation)
        stripped = [w.translate(table) for w in words]
        for w in stripped:
            if w == "":
                stripped.remove(w)
            elif w == " ":
                stripped.remove(w)
        filtered_sen_pun = ' '.join(stripped)
        print('Punc :', filtered_sen_pun)

        # Lowering the case
        #filtered_sent=filtered_sen_pun.lower()
        input_statement = Statement(filtered_sen_pun)
        print('-' * 100)
        print('input_statement ==>', input_statement)
        response = bot.generate_response(input_statement)
        print('=' * 100)
        print("Chatbot :", response.text)

        print('\n Is "{}" a coherent response to "{}"? \n'.format(
            response.text, input_statement.text))
        if get_feedback():
            print('please input the correct one')
            correct_response = Statement(text=input())
            bot.learn_response(correct_response, input_statement)
            print('Responses added to bot!')

    # Press ctrl-c or ctrl-d on the keyboard to exit
    except (KeyboardInterrupt, EOFError, SystemExit):
        break
コード例 #3
0
    if 'yes' in text.lower():
        return True
    elif 'no' in text.lower():
        return False
    else:
        print('Please type either "Yes" or "No"')
        return get_feedback()


print('Type something to begin...')

# The following loop will execute each time the user enters input
while True:
    try:
        input_statement = bot.input.process_input()
        statement, response = bot.generate_response(
            input_statement,
            CONVERSATION
        )
        print('\n Is "{}" this a coherent response to "{}"? \n'.format(response, input_statement))

        if get_feedback():
            bot.learn_response(CONVERSATION, response, input_statement)

        bot.output.process_response(response)

    # Press ctrl-c or ctrl-d on the keyboard to exit
    except (KeyboardInterrupt, EOFError, SystemExit):
        break
コード例 #4
0
class NLG_unit(object):

	""" This object contains tools to answer in natural language any message non-Fib related

	Attributes:
		chatterbot_bot(:class:`chatterbot.ChatBot`): chatterbot bot to process the non-fib-Related questions
		train_queue(:obj:`dict`): dictionary that act as a queue of training concepts
		conversation_id(:obj:`int` or None): Identifier that keeps track of the diferent amounts of conversations learnt
	"""
	def __init__(self):
		self.chatterbot_bot = ChatBot(
			"Fibot",
			storage_adapter="chatterbot.storage.SQLStorageAdapter",
		)
		self.train_queue = {}
		self.conversation_id = None

	"""
		This function load the learnt model for chatterbot
	"""
	def load(self):
		self.conversation_id = self.chatterbot_bot.storage.create_conversation()

	"""
		Parameters:
			chat_id (:obj:`str`): chat_id of the person to get feedback from
			correct (:obj:`bool`): tells whether the prediction was correct_statement
			correct_statement (:obj:`str` or None): Correction if there is

		This function enables the chatterbot bot to learn if he predicted good and allows
		him to learn new responses.
	"""
	def give_feedback(self, chat_id, correct = True, correct_statement = None):
		if not correct:
			message = self.train_queue[chat_id]['message']
			correct_statement = Statement(correct_statement)
			self.chatterbot_bot.learn_response(correct_statement, message)
			self.chatterbot_bot.storage.add_to_conversation(self.conversation_id, message, correct_statement)
			self.send_message(chat_id, "Aprendido!. Mándame más si quieres, o desactívame usando /train_off")
		else:
			self.send_message(chat_id, "Bien. Mándame más si quieres, o desactívame usando /train_off")

	"""
		Parameters:
			chat_id (:obj:`str`): chat_id of the person to process the answer for
			message (:obj:`str`): message the user introduced to be processed

		This function makes the bot predict the following message, and
		asks for checks.
	"""
	def process_answer_training(self, chat_id, message):
		print("Query de %s con mensaje %s"%(chat_id, message))
		self.send_chat_action(chat_id)
		input_statement = Statement(message)
		statement, response = self.chatterbot_bot.generate_response(input_statement, self.conversation_id)
		self.send_message(chat_id,'Es "{}" una respuesta coherente a "{}"? (Sí/No)'.format(response, message))
		self.train_queue[chat_id] = {
			'message': input_statement,
			'response': response
		}

	"""
		Parameters:
			message (:obj:`str`): message the user introduced to be processed
			debug (:obj:`bool`): indicates the level of verbosity

		This function returns the predicted responses for message
	"""
	def get_response(self, message, debug = False):
		input_statement = Statement(message)
		_, response = self.chatterbot_bot.generate_response(input_statement, self.conversation_id)
		if debug:
			return "%s, confidence = %d"%(response['text'], response['confidence'])
		else:
			return str(response)

	"""
		Parameters:
			chat_id (:obj:`str`): chat_id of the person to process the answer for
			message (:obj:`str`): content of the messages

		This function allows nlg class to send messages for the training duties
	"""
	def send_message(self, chat_id, message):
		params = {
			'chat_id': chat_id,
			'text': message
		}
		bot_token = os.getenv('FibotTOKEN')
		base_url = 'https://api.telegram.org/bot%s/sendMessage'%bot_token
		response = requests.get(base_url, params = params)

	"""
		Parameters:
			chat_id (:obj:`str`): chat_id of the person to process the answer for
			action (:obj:`str`): action to send of the messages

		This function allows nlg class to send chat_action for the training duties
	"""
	def send_chat_action(self, chat_id, action = ChatAction.TYPING):
		params = {
			'chat_id': chat_id,
			'action': action
		}
		bot_token = os.getenv('FibotTOKEN')
		base_url = 'https://api.telegram.org/bot%s/sendChatAction'%bot_token
		response = requests.get(base_url, params = params)
コード例 #5
0
    elif 'maybe' in text.lower():
        print('ok')
    else:
        print('Please type either "Yes" or "No"')
        return get_feedback()


print("Type something to begin...")

# The following loop will execute each time the user enters input
while True:
    try:
        input_statement = bot.input.process_input_statement()
        statement, response = bot.generate_response(input_statement,
                                                    CONVERSATION_ID)

        bot.output.process_response(response)
        print('\n Is "{}" a coherent response to "{}"? \n'.format(
            response, input_statement))
        if get_feedback():
            print("please input the correct one")
            response1 = bot.input.process_input_statement()
            bot.learn_response(response1, input_statement)
            bot.storage.add_to_conversation(CONVERSATION_ID, statement,
                                            response1)
            print("Responses added to bot!")

# Press ctrl-c or ctrl-d on the keyboard to exit
    except (KeyboardInterrupt, EOFError, SystemExit):
        break
コード例 #6
0
    elif 'No' in text:
        return False
    else:
        print('Please type either "Yes" or "No"')
        return get_feedback()

print('Type something to begin...')

# The following loop will execute each time the user enters input
while True:
    try:
        input_statement = bot.input.process_input_statement()
        statement, response, confidence = bot.generate_response(input_statement)

        print('\n Is "{}" this a coherent response to "{}"? \n'.format(response, input_statement))

        if get_feedback():
            bot.learn_response(response)

        bot.output.process_response(response, confidence)

        # Update the conversation history for the bot
        # It is important that this happens last, after the learning step
        bot.recent_statements.append(
            (statement, response, )
        )

    # Press ctrl-c or ctrl-d on the keyboard to exit
    except (KeyboardInterrupt, EOFError, SystemExit):
        break
コード例 #7
0
        return get_feedback()


print('Type something to begin...')

# The following loop will execute each time the user enters input
while True:
    try:
        input_statement = bot.input.process_input_statement()
        statement, response, confidence = bot.generate_response(
            input_statement)

        print('\n Is "{}" this a coherent response to "{}"? \n'.format(
            response, input_statement))

        if get_feedback():
            bot.learn_response(response)

        bot.output.process_response(response, confidence)

        # Update the conversation history for the bot
        # It is important that this happens last, after the learning step
        bot.recent_statements.append((
            statement,
            response,
        ))

    # Press ctrl-c or ctrl-d on the keyboard to exit
    except (KeyboardInterrupt, EOFError, SystemExit):
        break
コード例 #8
0
    ],
    preprocessors=['chatterbot.preprocessors.clean_whitespace'],
)
trainer = ChatterBotCorpusTrainer(chatbot)
trainer.train('./soporte.yml')
levenshtein_distance = LevenshteinDistance()
#synset_distance = SynsetDistance()
#sentiment_comparison = SentimentComparison()
#jaccard_similarity = JaccardSimilarity()

disparate = Statement(
    'Te has equivocado')  #convertimos una frase en un tipo statement
entradaDelUsuario = ""  #variable que contendrá lo que haya escrito el usuario

while entradaDelUsuario != "adios":
    entradaDelUsuario = Statement(text=input())  #leemos la entrada del usuario
    respuesta = chatbot.generate_response(entradaDelUsuario)
    try:
        fecha = datetime_parsing(entradaDelUsuario.text)
        fecha = fecha[0]
        print(fecha[0])
    except:
        pass
    if levenshtein_distance.compare(entradaDelUsuario, disparate) > 0.51:
        print('¿Qué debería haber dicho?')
        entradaDelUsuarioCorreccion = Statement(input())
        chatbot.learn_response(entradaDelUsuarioCorreccion, entradaDelUsuario)
        print("He aprendiendo que cuando digas {} debo responder {}".format(
            entradaDelUsuario.text, entradaDelUsuarioCorreccion.text))

    print(respuesta)
コード例 #9
0
class Chatterbot:
    def __init__(self, bot):
        self.bot = bot
        self.settings = dataIO.load_json('data/chatterbot/settings.json')
        self.chatterbot = ChatBot('Athena',
                                  database='LanLogFour',
                                  storage_adapter='chatterbot.storage.'
                                  'MongoDatabaseAdapter',
                                  input_adapter='chatterbot.input.'
                                  'VariableInputTypeAdapter',
                                  output_adapter='chatterbot.output.'
                                  'OutputAdapter',
                                  output_format='text',
                                  logic_adapters=[
                                      {'import_path': 'chatterbot.logic.'
                                       'BestMatch',
                                       'statement_comparison_function':
                                       'chatterbot.comparisons.'
                                       'levenshtein_distance',
                                       'response_selection_method':
                                       'chatterbot.response_selection.'
                                       'get_most_frequent_response'},
                                      'chatterbot.logic.MathematicalEvaluation'
                                      ]
                                  )
        self.conversations = {}
        self.previous_statement = {}

    @commands.command(pass_context=True)
    async def chat(self, ctx):
        """Reads messages from chat"""
        message = ctx.message.content[6:]
        conversation_id = self._get_conversation(ctx.message.channel.id)
        response = await self._get_response(message, conversation_id)
        await self.bot.say(response)

    @commands.command()
    @checks.serverowner_or_permissions(manage_server=True)
    async def chattertraindocs(self):
        """Runs training on the docs"""
        self.chatterbot.set_trainer(ListTrainer)
        with open('data/chatterbot/doc1.txt') as f:
            doc1 = f.readlines()
        with open('data/chatterbot/doc2.txt') as f:
            doc2 = f.readlines()
        docData = doc1 + doc2
        docData = [x.strip(',') for x in docData]
        docData = [x.strip('\'') for x in docData]
        docData = [x.strip('\n') for x in docData]
        self.chatterbot.train(docData)
        await self.bot.say("Training complete.")

    @commands.command()
    @checks.serverowner_or_permissions(manage_server=True)
    async def chattertrain(self):
        self.chatterbot.set_trainer(ChatterBotCorpusTrainer)
        self.chatterbot.train("chatterbot.corpus.english")
        await self.bot.say("Training complete")

    @commands.command(no_pm=True, pass_context=True)
    @checks.serverowner_or_permissions(manage_server=True)
    async def chatchannel(self, context, channel: discord.Channel = None):
        """
        Set the channel to which the bot will sent its continues updates.
        Example: [p]chatchannel #talk
        """
        if channel:
            self.settings['CHANNEL_ID'] = str(channel.id)
            dataIO.save_json('data/chatterbot/settings.json', self.settings)
            message = 'Channel set to {}'.format(channel.mention)
        elif not self.settings['CHANNEL_ID']:
            message = 'No Channel set'
        else:
            channel = discord.utils.get(
                self.bot.get_all_channels(), id=self.settings['CHANNEL_ID'])
            if channel:
                message = 'Current channel is {}'.format(channel.mention)
            else:
                self.settings['CHANNEL_ID'] = None
                message = 'No channel set'

        await self.bot.say(message)

    @commands.command(pass_context=True)
    @checks.serverowner_or_permissions(manage_server=True)
    async def chatterignore(self, context, channel: discord.Channel = None):
        if channel:
            self.settings['BLOCKED_CHANNELS'].append(channel.id)
            # TODO: Check if already in list
            dataIO.save_json('data/chatterbot/settings.json', self.settings)
            message = '{} added to blocked channels.'.format(channel.mention)
        elif not self.settings['BLOCKED_CHANNELS']:
            message = 'No channels blocked'
        # else:
        #    channel = discord.utils.get(
        #        self.bot.get_all_channels(),
        #        id=self.settings['BLOCKED_CHANNELS'])
        #    if channel:
        #        message = 'Current channel is {}'.format(channel.mention)
        #    else:
        #        self.settings['CHANNEL_ID'] = None
        #        message = 'No channel set'

        await self.bot.say(message)

    async def listener(self, message):
        if message.author.id == self.bot.user.id:
            pass
        elif message.content == '':
            pass
        elif message.content[0] == '!':  # Kludge
            pass
        elif message.mention_everyone is True:
            pass
        elif message.mentions != []:
            pass
        elif message.role_mentions != []:
            pass
        elif message.channel.id == self.settings['CHANNEL_ID']:
            conversation_id = self._get_conversation(message.channel.id)
            response = await self._get_response(message.content,
                                                conversation_id)
            await self.bot.send_message(message.channel, response)
        elif message.channel.id not in self.settings['BLOCKED_CHANNELS']:
            conversation_id = self._get_conversation(message.channel.id)
            input_statement = self.chatterbot.input.process_input_statement(
                message.content)
            if conversation_id in self.previous_statement:
                self.chatterbot.learn_response(
                    input_statement, self.previous_statement[conversation_id])
                self.previous_statement[conversation_id] = input_statement
            else:
                self.previous_statement[conversation_id] = input_statement
        else:
            pass

    async def _get_response(self, input_item, conversation_id):
        input_statement = self.chatterbot.input.process_input_statement(
            input_item)
        # Preprocess the input statement
        for preprocessor in self.chatterbot.preprocessors:
            input_statement = preprocessor(self.chatterbot, input_statement)
        statement, response = self.chatterbot.generate_response(
            input_statement, conversation_id)
        # Learn that the user's input was a valid response to the chat bot's
        # previous output
        if not self.chatterbot.read_only:
            if conversation_id in self.previous_statement:
                prev = self.previous_statement[conversation_id]
            else:
                prev = None
            self.chatterbot.learn_response(statement, prev)
            self.chatterbot.storage.add_to_conversation(conversation_id,
                                                        statement, response)
            self.previous_statement[conversation_id] = response
        # Process the response output with the output adapter
        return str(response)

    def _get_conversation(self, channel_id):
        try:
            conversation_id = self.conversations[channel_id]
        except KeyError:
            conversation_id = self.chatterbot.storage.create_conversation()
            self.conversations[channel_id] = conversation_id
        return conversation_id
コード例 #10
0
    elif 'no' in text.lower():
        return False
    else:
        print('Please type either "Yes" or "No"')
        return get_feedback()


print('Type something to begin...')

# The following loop will execute each time the user enters input
while True:
    try:
        input_statement = Statement(text=input())
        response = bot.generate_response(
            input_statement
        )

        print('\n Is "{}" a coherent response to "{}"? \n'.format(
            response.text,
            input_statement.text
        ))
        if get_feedback():
            print('please input the correct one')
            correct_response = Statement(text=input())
            bot.learn_response(correct_response, input_statement)
            print('Responses added to bot!')

    # Press ctrl-c or ctrl-d on the keyboard to exit
    except (KeyboardInterrupt, EOFError, SystemExit):
        break
コード例 #11
0
ファイル: core.py プロジェクト: r4nx/eternitychatbot-core
class AIChatBot:
    def __init__(self,
                 bot_name,
                 self_training,
                 low_confidence_threshold,
                 low_confidence_responses,
                 random_response=True,
                 premoderation_callback=None,
                 db_file=None,
                 db_uri=None):
        """Create new AIChatBot instance.

        Args:
            bot_name (str): Bot name.
            db_uri (str): Database URI.
            db_file (str): Database file (should not be used, left for backward compatibility)
            self_training (bool): Will bot train itself.
            low_confidence_threshold (float): Confidence threshold, if lower - low_confidence_responses will be used.
            low_confidence_responses (list): Responses that will be used if confidence is lower than threshold.
            random_response (bool): If true, choose random response instead of the most frequent.
            premoderation_callback (function): Premoderation function, set None to disable.
        """
        # Backward compatibility
        if db_uri is None and db_file is not None:
            db_uri = 'sqlite:///{}'.format(db_file)
            warnings.warn(
                'use db_uri instead of deprecated db_file, it will be removed in the future',
                DeprecationWarning)
        self.__chatbot = ChatBot(
            bot_name,
            logic_adapters=['chatterbot.logic.BestMatch'],
            response_selection_method=get_random_response
            if random_response else get_most_frequent_response,
            filters=['chatterbot.filters.RepetitiveResponseFilter'],
            database_uri=db_uri)
        self.__conversation_id = self.__chatbot.storage.create_conversation()
        self.previous_response = None

        self.__self_training = self_training
        self.__low_confidence_threshold = low_confidence_threshold
        self.__low_confidence_responses = low_confidence_responses
        self.__premoderation_callback = premoderation_callback

    def get_response(self, question, premoderation_payload=None):
        """Get response to the message.

        Args:
            question (str): Message.
            premoderation_payload: Data to pass to premoderation_callback.

        Returns:
            str: Response.

        """
        # Get supposed response
        question = Statement(question)
        response = self.__chatbot.generate_response(question,
                                                    self.__conversation_id)[1]
        """:type : Response"""

        # Choose random response if confidence is lower than threshold
        if response.confidence < self.__low_confidence_threshold and self.__low_confidence_responses:
            response = Statement(choice(self.__low_confidence_responses))

        if self.__premoderation_callback:
            response = self.__premoderation_callback(question.text,
                                                     response.text,
                                                     premoderation_payload)
            if not response:
                return
            response = Statement(response)
            response.confidence = 1
            self.__chatbot.learn_response(response, question)
            self.__chatbot.storage.add_to_conversation(self.__conversation_id,
                                                       question, response)

        if self.__self_training and self.previous_response and '?' in self.previous_response.text and \
                self.previous_response.confidence >= self.__low_confidence_threshold:
            self.__chatbot.learn_response(question, self.previous_response)
            self.__chatbot.storage.add_to_conversation(self.__conversation_id,
                                                       self.previous_response,
                                                       question)
        self.previous_response = response

        return response.text

    def learn(self, question, response):
        """Learn a response.

        Args:
            question (str): Question.
            response (str): Response

        """
        question = Statement(question)
        response = Statement(response)
        self.__chatbot.learn_response(response, question)
        self.__chatbot.storage.add_to_conversation(self.__conversation_id,
                                                   question, response)

    def statement_exists(self, statement_text):
        """Check if statement exists.

        Args:
            statement_text (str): Statement text.

        Returns:
            bool

        """
        return True if self.__chatbot.storage.find(statement_text) else False

    def remove_statement(self, statement_text):
        """Remove statement from database.

        Args:
            statement_text (str): Statement text.

        """
        self.__chatbot.storage.remove(statement_text)
コード例 #12
0
class Bott:
    def quitaNoAlfaNum(self, texto):
        import re
        tmp = re.compile(r'\W+', re.UNICODE).split(texto)
        return ''.join(str(e + " ") for e in tmp)

    def __init__(self, nombre_db):
        self.nombre_db = self.quitaNoAlfaNum(nombre_db) + "db"
        print "*" + self.nombre_db + "*"

        self.chatbot = ChatBot(
            "Chat",
            storage_adapter='chatterbot.storage.MongoDatabaseAdapter',
            database_uri='mongodb://localhost:27017/',
            database='chat_2',

            #TRAINING
            trainer='chatterbot.trainers.ListTrainer',
            #input_adapter="chatterbot.input.TerminalAdapter",
            #output_adapter="chatterbot.output.TerminalAdapter",
            logic_adapters=[
                {
                    "import_path":
                    "chatterbot.logic.BestMatch",
                    "statement_comparison_function":
                    "chatterbot.comparisons.levenshtein_distance",
                    "response_selection_method":
                    "chatterbot.response_selection.get_most_frequent_response"
                },
                {
                    'import_path':
                    'chatterbot.logic.LowConfidenceAdapter',
                    'threshold':
                    0.51,
                    'default_response':
                    'Disculpa, no he entendido lo que ha querido decir. Puede replantearlo.'
                },
                {
                    'import_path': 'chatterbot.logic.SpecificResponseAdapter',
                    'input_text': 'Quiero guardar una cita',
                    'output_text':
                    'Puede guardar una cita en http://google.com'
                },
            ],
            preprocessors=['chatterbot.preprocessors.clean_whitespace'],

            #read_only=True,
        )
        #DEFAULT_SESSION_ID = chatbot.default_conversation_id

        from chatterbot.trainers import ChatterBotCorpusTrainer

        self.chatbot.set_trainer(ChatterBotCorpusTrainer)
        self.chatbot.train("./cruises_es.yml")

        # Start by training our bot with the ChatterBot corpus data
        self.chatbot.train('chatterbot.corpus.spanish')

    '''
	conversation = [
	"Hello",
	"Hi there!",
	"How are you doing?",
	"I'm doing great.",
	"That is good to hear",
	"Thank you.",
	"You're welcome."
	]

	chatbot.set_trainer(ListTrainer)
	chatbot.train(conversation)
	'''
    #request = raw_input("Escriba su pregunta: ")
    '''
	response = chatbot.get_response(None)
	response = u' '.join((response.text, '')).encode('utf-8').strip()
	imprimir 'Bot: '+response
	'''

    #ORIGINAL
    def responder(self, pregunta):
        #imprimir("Pregunta..."+pregunta)
        #imprimir("Estamos en chatbot")
        #pregunta = pregunta.replace('á','&atilde;').replace('é','&etilde;').replace('í','&itilde;').replace('ó','&otilde;').replace('ú','&utilde;').replace('ñ','&ntilde;')
        pregunta = u' '.join((pregunta, '')).encode('utf-8').strip()

        response = self.chatbot.get_response(pregunta)
        response = response.text.replace('&atilde;', 'á').replace(
            '&etilde;',
            'é').replace('&itilde;', 'í').replace('&otilde;', 'ó').replace(
                '&utilde;', 'ú').replace('&ntilde;', 'ñ')
        #response = response.encode("utf-8",'replace')
        response = u' '.join((response, '')).decode('utf-8').strip()
        #imprimir response

        return response

    #drop database....
    #mongo chat_2 --eval "db.dropDatabase()"

    #entrenando
    #http://chatterbot.readthedocs.io/en/stable/examples.html

    #pregunta = raw_input("Ingrese su respuesta y luego su pregunta\n ")
    #response = chatbot.get_response("Si, como todos")
    #imprimir "Su respuesta:"+response
    '''
	while True:
		pregunta = raw_input("Human: ")
		response = responder(pregunta)
		imprimir "Bot: "+response
	'''

    #CONVERSATION_ID = self.chatbot.storage.create_conversation()

    #training
    #HUMAN:BOT
    def training(self, input_):
        #FIJARSE EN FUNCIONES->ENVIAR_MENSAJE
        tmp = input_.split("lll")
        human = tmp[0]
        bot = tmp[1]

        human_ = Statement(human)
        #statement, response = chatbot.generate_response(input_statement, CONVERSATION_ID)
        bot_ = Statement(bot)
        self.chatbot.learn_response(bot_, human_)
        #chatbot.storage.add_to_conversation(CONVERSATION_ID, statement, response1)
        exists = self.chatbot.storage.find(bot_.text)
        print("Human: " + human_.text)
        print("Bot: " + bot_.text)
        return exists.text
コード例 #13
0
    text = input()

    if 'yes' in text.lower():
        return True
    elif 'no' in text.lower():
        return False
    else:
        print('Please type either "Yes" or "No"')
        return get_feedback()


print('Type something to begin...')

# The following loop will execute each time the user enters input
while True:
    try:
        input_statement = bot.input.process_input()
        statement, response = bot.generate_response(input_statement,
                                                    CONVERSATION)
        print('\n Is "{}" this a coherent response to "{}"? \n'.format(
            response, input_statement))

        if get_feedback():
            bot.learn_response(CONVERSATION, response, input_statement)

        bot.output.process_response(response)

    # Press ctrl-c or ctrl-d on the keyboard to exit
    except (KeyboardInterrupt, EOFError, SystemExit):
        break
コード例 #14
0
ファイル: Monty.py プロジェクト: Rpygamer/2020_11_Monty
    #get ansewers from lara bot
    bot_input = lara.get_response(question)

    if (bot_input.text == "I am sorry, but I do not understand."):
        print("Lara :", bot_input.text)
        print(
            "Lara: Could you please suggest a response for your question here")

        proposition = input("Your proposition :")
        new_response = Statement(proposition, in_response_to=question)
        new_response.search_text = lara.storage.tagger.get_bigram_pair_string(
            proposition.lower())
        new_response.conversation = str('training')
        new_response.search_in_response_to = lara.storage.tagger.get_bigram_pair_string(
            question.lower())
        lara.learn_response(new_response)
        #conn = sqlite3.connect("db.sqlite3")
        """
        Once we have a Connection object, we can then create a Cursor object. 
        Cursors allow us to execute SQL queries against a database.
        
        """
        #df = pd.read_sql_query("select * from statement;", conn)
        #print(df.shape)

        #df.loc[len(df)] = [len(df)+1, question,question,"training","",question,proposition, ""]
        #df["conversation"].loc[df.in_response_to == question] = "training"
        #df["search_in_response_to"].loc[df.in_response_to == question] = question
        #df["persona"].loc[df.in_response_to == question] = ""
        #print(df.shape)
        #df.to_sql("statement", conn, if_exists="replace",index = False) #if_exists='append'