コード例 #1
0
        logit('Initializing batches')

        batch = []
        for i in range(nbatch):
            batch.append([])

        for i in range(len(specmanager.ms_spectra)):
            batch[int(specmanager.ms_spectra[i].
                      parameters['crossvalidation_batch_index'])].append(i)

        print(batch)

        multiprocessing.freeze_support()

        with PeakAnnotator(dbfiles, fingerprint_model_path,
                           nproc) as peak_annotator:
            batch = 0
            '''
            logit('FragPrint 20 ppm, FingerPrint, metabolite likeness 2 class raw, plus formula');
            
            testrun(['FragPrintScorer','FingerPrintScorer'],[([0,-1,1], 20, 0, 1),[]], batch, use_metalikeness=True, use_formula=True);
            
            logit('FragPrint 20 ppm, FingerPrint, no metabolite likeness 2 class raw');
            
            testrun(['FragPrintScorer','FingerPrintScorer'],[([0,-1,1], 20, 0, 1),[]], batch, use_metalikeness=False);
            '''

            logit(
                'FragPrint 20 ppm, FingerPrint, metabolite likeness 2 class, use formula'
            )
コード例 #2
0
def run_annotation(spectral_input_path, db_file, chemical_databases, output_folder, SVMs_path, ncpu, ppm, max_results_per_query, test_mode=False, ignore_peaks_without_spectra=True):

    global starttime;
    global logfile;

    if not os.path.isfile(db_file):
        print('No database list file found!');
        quit();

    db_files=[db_file];
    
    if not os.path.exists(output_folder):
        try:
            os.makedirs(output_folder);
        except:
            print('Cannot create output path %s !'%output_folder);
            print('Run: python annotate.py -h for help');
            sys.exit(2);
    
    logfile=open(os.path.join(output_folder,'log.txt'),'w');
    starttime=time.time();

    logit('Starting. %s'%time.strftime('%d/%m/%y %H:%M:%S'));
    logit('Input Spectral path: %s'%spectral_input_path);
    logit('Output path: %s'%output_folder)
    if chemical_databases:
        logit('Chemical Databases Included: %s'%chemical_databases);
    else:
        logit('Chemical Databases Included: All');
        
    logit('from chemical database paths file %s'%db_file);
    logit('SVMs from %s'%SVMs_path);
    logit('nCPUs to use: %s'%ncpu);
    logit('Default ppm tolerance for MS1: %s'%ppm);    

    
    specmanager=SpectralManager();
    logit('Reading test spectra...');
        
    specmanager.import_textfile_spectra_from_folder(spectral_input_path);
        
    logit('Finshed reading spectra. Total number: %s'%len(specmanager.ms_spectra));
        
    logtime();
    
    multiprocessing.freeze_support();
    
    scorers_list=['FingerPrintScorer','FragPrintScorer'];
    scorers_settings=[[],[]];
    total_score=total_multiplicative_score;
        
    with PeakAnnotator(db_files, SVMs_path, ncpu) as peak_annotator:
        logit('Beginning annotation...');
        logtime();
        
        total_peaks=0;
    
        best_results_neg=[0]*max_results_per_query;
        worst_results_neg=[0]*max_results_per_query;
        return_number_neg=[0]*max_results_per_query;
        neg_mode_count=0;
            
        best_results_pos=[0]*max_results_per_query;
        worst_results_pos=[0]*max_results_per_query;
        return_number_pos=[0]*max_results_per_query;
        pos_mode_count=0;
        
        peaks=[];
        
        supported_adducts=set(global_supported_adducts);
                                
        #Collect all supported adducts
        #if 'FingerPrintScorer' in scorers_list:
        #    supported_adducts=supported_adducts|FingerPrintScorer.supported_adducts;

        #if 'FragPrintScorer' in scorers_list:
        #    supported_adducts=supported_adducts|FragPrintScorer.supported_adducts;

        #Leave only adducts supported by all selected filters                                
        if 'FingerPrintScorer' in scorers_list:
            supported_adducts=supported_adducts&FingerPrintScorer.supported_adducts;

        if 'FragPrintScorer' in scorers_list:
            supported_adducts=supported_adducts&FragPrintScorer.supported_adducts;

                
        logit('Preparing annotations');                        
        if test_mode:
            logit('Running in test mode.....');            
            
            logit('Assuming correct adduct info and 0 isotope.');
            logit('No formula assumption. Mass precision: %s ppm'%ppm);
            logit('Only considering [M+H]+ and [M-H]- adducts for now');
            
            print('\n');
                
            for spectrum_index in range(len(specmanager.ms_spectra)):
                    #print('\r%s of %s spectra preprocessed'%(spectrum_index,len(specmanager.ms_spectra)));
                    spectrum=specmanager.ms_spectra[spectrum_index];
                    
                    for peak in spectrum.peaks:
                        if (not ignore_peaks_without_spectra) or (hasattr(peak,'ms_spectra') and peak.ms_spectra):
                            if hasattr(peak,'parameters') and ('ion_type' in peak.parameters):
                                if (peak.parameters['ion_type'] in FragPrintScorer.supported_adducts):
                                    peak.ppm=ppm; 
                                    
                                    shortinchi=get_short_inchi_from_full_inchi(peak.parent_spectrum.parameters['inchi']);
                                    
                                    annotation=MSPeakAnnotation(peak, adduct=\
                                        get_adduct_by_name(peak.parameters['ion_type'], \
                                        spectrum.parameters['mode']), isotope=0, \
                                        formula_scorer=None, element_scorer=None, filters=[], scores={});
                                        
                                    #testformulascorer=FormulaScorer();
                                    #testformulascorer.setup_scorer(peak.parent_spectrum.parameters['formula'],1.0);
                                    #testelementscorer=ElementScorer();
                                    #testelementscorer.setup_scorer({'C':0.8,'O':0.9,'Si':0.1});
                                    
                                    #formulafilter=FormulasFilter(formulas=[peak.parent_spectrum.parameters['formula']]);
                                    
                                    #elementfilter=ElementCompositionFilter(peak.parent_spectrum.parameters['formula'], peak.parent_spectrum.parameters['formula']);
                                    
                                    #inchifilter=InChIFilter(ref_inchi=peak.parent_spectrum.parameters['inchi'],use_short_inchi=False, match_type=0)
                                                                        
                                    
                                    #annotation=MSPeakAnnotation(peak, adduct=\
                                    #    get_adduct_by_name(peak.parameters['ion_type'], \
                                    #    spectrum.parameters['mode']), isotope=0, \
                                    #    formula_scorer=testformulascorer, element_scorer=testelementscorer, \
                                    #    filters=[formulafilter, inchifilter, elementfilter], scores={'ExtraScore':25.0, 'AllExtra':1.9});
                                        
                                    
                                    if not (annotation.adduct is None):
                                        peak.annotations=[annotation];
                                        peaks.append(peak);
                                    else:
                                        logit('Unsupported Adduct: %s'%peak.parameters['ion_type']);
        else:
            

            logit('Running in normal mode.....');            
            logit('Mass precision: %s ppm'%ppm);
            
            print('\n');
            
            for spectrum_index in range(len(specmanager.ms_spectra)):
                    #print('\r%s of %s spectra preprocessed'%(spectrum_index,len(specmanager.ms_spectra)));
                    spectrum=specmanager.ms_spectra[spectrum_index];
                    for peak in spectrum.peaks:
                        if (not ignore_peaks_without_spectra) or (hasattr(peak,'ms_spectra') and peak.ms_spectra):
                            peak.ppm=ppm; 
                            generate_annotation=True;
                            if hasattr(peak, 'annotations'):
                                if peak.annotations:
                                    generate_annotation=False;
                                    peaks.append(peak);
                            
                            if generate_annotation:
                                #Assuming isotope 0 by default
                                if spectrum.parameters['mode']==1:
                                    selected_adducts=get_positive_mode_adducts(supported_adducts);
                                else:
                                    selected_adducts=get_negative_mode_adducts(supported_adducts);
                                
                                peak.annotations=[];
                                for adduct in selected_adducts:
                                    annotation=MSPeakAnnotation(peak, adduct=adduct, isotope=0, formula_scorer=None, element_scorer=None, filters=[], scores={});
                                    peak.annotations.append(annotation);
                                    peaks.append(peak);
                                    
        
        logit('Peaks to annotate: %s'%len(peaks));
        
        if test_mode:
            required_fields=set(['ShortInChI','InChI','SMILES','Formula','IDs']);
            #required_fields=set(['ShortInChI','InChI','SMILES','Formula','IDs', 'InChIKeyValues', 'InChiKey', 'FormulaVector', 'ElementVector', 'Frag', 'FPT']);
            
        else:
            required_fields=set(['InChI','SMILES','Formula','IDs']);
        
        peak_annotator.annotate_peaks(peaks, chemical_databases, \
                scorers_list=scorers_list, scorers_settings=scorers_settings, total_score=total_score, required_fields=required_fields,\
                results_limit=max_results_per_query, save_memory=False, ppm=ppm, overwrite=True);
        
        
        
        annotation_count=0;
        total_candidates=0;                    

        total_peaks=len(peaks);
        for peakindex in range(total_peaks):
            peak=peaks[peakindex];
            if peak.annotations:
                for annotation in peak.annotations:
                    if not (annotation.mol_candidates is None):
                        annotation_count+=1;
                        total_candidates+=annotation.mol_candidates.total_candidate_count;
                        
        
        
        logit('Finished annotating... ');
        logit('Annotated peaks :%s'%total_peaks);    
        if total_peaks>0:
            logit('Averaged annotations per peak:%s'%(float(annotation_count)/total_peaks));    
            logit('Averaged candidate molecules per peak:%s'%(float(total_candidates)/total_peaks));    
        
        
        #Calculating retrieval statistics using test data
        #=====================================================================
        
        if test_mode:
            #logit('Removing peaks with no annotations found from consideration...');
            #for i in reversed(range(len(peaks))):
            #    if not peaks[i].annotations:
            #        del peaks[i];
                
            #logit('Finished removing... Annotated peaks :%s'%len(peaks));    
                
            total_peaks=len(peaks);
            print('Calculating retrieval stats...\n');
                
            for peakindex in range(total_peaks):
                peak=peaks[peakindex];
                peakmode=0;
                if peak.parent_spectrum.parameters['mode']==1:
                    pos_mode_count+=1;
                    peakmode=1;
                elif peak.parent_spectrum.parameters['mode']==-1:
                    neg_mode_count+=1;
                    peakmode=-1;
                        
                #print('\r%s of %s '%(peakindex,total_peaks));
                shortinchi=get_short_inchi_from_full_inchi(peak.parent_spectrum.parameters['inchi']);
        
                for annotation in peak.annotations:
                    annotation.min_correct=-1;
                    annotation.max_correct=-1;
                    annotation.mean_score=0.0;
                    annotation.max_score=0.0;
                    for index in range(len(annotation.mol_candidates.mol_list)):
                        total_score=annotation.mol_candidates.mol_list[index]['TotalScore'];
                        annotation.mean_score+=total_score;
                        if total_score>annotation.max_score:
                            annotation.max_score=total_score;
                    if len(annotation.mol_candidates.mol_list)>0:
                        annotation.mean_score=annotation.mean_score/len(annotation.mol_candidates.mol_list);
                        if len(annotation.mol_candidates.mol_list)<=max_results_per_query:
                            if peakmode==1:
                                return_number_pos[len(annotation.mol_candidates.mol_list)-1]+=1;
                            elif peakmode==-1:
                                return_number_neg[len(annotation.mol_candidates.mol_list)-1]+=1;                            
                            
                    for index in reversed(range(1,len(annotation.mol_candidates.mol_list))):
                        if annotation.mol_candidates.mol_list[index-1]['ShortInChI']==annotation.mol_candidates.mol_list[index]['ShortInChI']:
                            del annotation.mol_candidates.mol_list[index]; # For the purpose of statistics condensing sequential identical Short InChI-s
                        
                    for index in range(len(annotation.mol_candidates.mol_list)):
                        if annotation.mol_candidates.mol_list[index]['ShortInChI']==shortinchi:
                            annotation.mol_candidates.mol_list[index]['Annotation']='Correct';
                            if annotation.min_correct==-1:
                                annotation.min_correct=index;
                            annotation.max_correct=index;
                        else:
                            annotation.mol_candidates.mol_list[index]['Annotation']='Wrong';
                            
                    if annotation.min_correct>-1:
                        if peakmode==1:
                            for i in range(len(best_results_pos)):
                                if annotation.min_correct<=i:
                                    best_results_pos[i]+=1;
                                if annotation.max_correct<=i:
                                    worst_results_pos[i]+=1;
                        elif peakmode==-1:
                            for i in range(len(best_results_neg)):
                                if annotation.min_correct<=i:
                                    best_results_neg[i]+=1;
                                if annotation.max_correct<=i:
                                    worst_results_neg[i]+=1;
    
            logit('Finished Calculating Retrieval Stats.');
            logit('Positive Mode Count: %s'%pos_mode_count);
            logit('Negative Mode Count: %s'%neg_mode_count);
            logit('Total Peaks: %s'%total_peaks);
        
            logit('Positive Mode (Total: %s ):'%pos_mode_count);
            if pos_mode_count>0:
                for i in range(max_results_per_query):
                    logit('Correct within first\t%s:\tBest:\t%.2f%%\tWorst:\t%.2f%%\tCCount:\t%s'%(i+1,float(best_results_pos[i])*100/pos_mode_count,worst_results_pos[i]*100/pos_mode_count,return_number_pos[i]));
        
            logit('Negative Mode (Total: %s ):'%neg_mode_count);
            if neg_mode_count>0:
                for i in range(max_results_per_query):
                    logit('Correct within first\t%s:\tBest:\t%.2f%%\tWorst:\t%.2f%%\tCCount:\t%s'%(i+1,float(best_results_neg[i])*100/neg_mode_count,worst_results_neg[i]*100/neg_mode_count,return_number_neg[i]));
        
            logit('Both Modes (Total: %s ):'%(pos_mode_count+neg_mode_count));
            if neg_mode_count>0 or pos_mode_count>0:
                for i in range(max_results_per_query):
                    logit('Correct within first\t%s:\tBest:\t%.2f%%\tWorst:\t%.2f%%\tCCount:\t%s'%(i+1,float(best_results_neg[i]+best_results_pos[i])*100/(neg_mode_count+pos_mode_count),float(worst_results_neg[i]+worst_results_pos[i])*100/(neg_mode_count+pos_mode_count),return_number_pos[i]+return_number_neg[i]));
            for peak in peaks:
                merge_annotations(peak, remove_old_annotations=False);

        #Finished calculating retrieval statistics using test data
        #=====================================================================
        
    logtime();
    logit('Finished Annotation. Exporting results...');
    
    logtime();
    logit('Exporting to JSON...');
        
    spectra_to_json(os.path.join(output_folder,'annotated_spectra.json'), specmanager.ms_spectra);
    
    logtime();
    logit('Exporting to internal text format...');
    
    
    specmanager.export_textfile_spectra_to_folder(os.path.join(output_folder,'annotated_spectra'));
    
    logit('Preparing HTML report...');
    
    generate_HTML_report(os.path.join(output_folder,'Report'), specmanager);
                
    specmanager.close();
    
    logtime();
    
    logit('Finished');
    
    logfile.close();