def set_features(args: PredictArgs, train_args: TrainArgs): """ Function to set extra options. :param args: A :class:`~chemprop.args.PredictArgs` object containing arguments for loading data and a model and making predictions. :param train_args: A :class:`~chemprop.args.TrainArgs` object containing arguments for training the model. """ reset_featurization_parameters() if args.atom_descriptors == 'feature': set_extra_atom_fdim(train_args.atom_features_size) if args.bond_features_path is not None: set_extra_bond_fdim(train_args.bond_features_size) #set explicit H option and reaction option set_explicit_h(train_args.explicit_h) set_adding_hs(args.adding_h) set_reaction(train_args.reaction, train_args.reaction_mode)
def make_predictions( args: PredictArgs, smiles: List[List[str]] = None) -> List[List[Optional[float]]]: """ Loads data and a trained model and uses the model to make predictions on the data. If SMILES are provided, then makes predictions on smiles. Otherwise makes predictions on :code:`args.test_data`. :param args: A :class:`~chemprop.args.PredictArgs` object containing arguments for loading data and a model and making predictions. :param smiles: List of list of SMILES to make predictions on. :return: A list of lists of target predictions. """ print("Loading training args") train_args = load_args(args.checkpoint_paths[0]) num_tasks, task_names = train_args.num_tasks, train_args.task_names update_prediction_args(predict_args=args, train_args=train_args) args: Union[PredictArgs, TrainArgs] if args.atom_descriptors == "feature": set_extra_atom_fdim(train_args.atom_features_size) if args.bond_features_path is not None: set_extra_bond_fdim(train_args.bond_features_size) # set explicit H option and reaction option set_explicit_h(train_args.explicit_h) set_reaction(train_args.reaction, train_args.reaction_mode) print("Loading data") if smiles is not None: full_data = get_data_from_smiles( smiles=smiles, skip_invalid_smiles=False, features_generator=args.features_generator, ) else: full_data = get_data( path=args.test_path, smiles_columns=args.smiles_columns, target_columns=[], ignore_columns=[], skip_invalid_smiles=False, args=args, store_row=not args.drop_extra_columns, ) print("Validating SMILES") full_to_valid_indices = {} valid_index = 0 for full_index in range(len(full_data)): if all(mol is not None for mol in full_data[full_index].mol): full_to_valid_indices[full_index] = valid_index valid_index += 1 test_data = MoleculeDataset( [full_data[i] for i in sorted(full_to_valid_indices.keys())]) # Edge case if empty list of smiles is provided if len(test_data) == 0: return [None] * len(full_data) print(f"Test size = {len(test_data):,}") # Predict with each model individually and sum predictions if args.dataset_type == "multiclass": sum_preds = np.zeros( (len(test_data), num_tasks, args.multiclass_num_classes)) else: sum_preds = np.zeros((len(test_data), num_tasks)) # Create data loader test_data_loader = MoleculeDataLoader( dataset=test_data, batch_size=args.batch_size, num_workers=0 if sys.platform == "darwin" else args.num_workers, ) # Partial results for variance robust calculation. if args.ensemble_variance: all_preds = np.zeros( (len(test_data), num_tasks, len(args.checkpoint_paths))) print( f"Predicting with an ensemble of {len(args.checkpoint_paths)} models") for index, checkpoint_path in enumerate( tqdm(args.checkpoint_paths, total=len(args.checkpoint_paths))): # Load model and scalers model = load_checkpoint(checkpoint_path, device=args.device) ( scaler, features_scaler, atom_descriptor_scaler, bond_feature_scaler, ) = load_scalers(checkpoint_path) # Normalize features if (args.features_scaling or train_args.atom_descriptor_scaling or train_args.bond_feature_scaling): test_data.reset_features_and_targets() if args.features_scaling: test_data.normalize_features(features_scaler) if (train_args.atom_descriptor_scaling and args.atom_descriptors is not None): test_data.normalize_features(atom_descriptor_scaler, scale_atom_descriptors=True) if train_args.bond_feature_scaling and args.bond_features_size > 0: test_data.normalize_features(bond_feature_scaler, scale_bond_features=True) # Make predictions model_preds = predict(model=model, data_loader=test_data_loader, scaler=scaler) sum_preds += np.array(model_preds) if args.ensemble_variance: all_preds[:, :, index] = model_preds # Ensemble predictions avg_preds = sum_preds / len(args.checkpoint_paths) avg_preds = avg_preds.tolist() if args.ensemble_variance: all_epi_uncs = np.var(all_preds, axis=2) all_epi_uncs = all_epi_uncs.tolist() # Save predictions print(f"Saving predictions to {args.preds_path}") assert len(test_data) == len(avg_preds) if args.ensemble_variance: assert len(test_data) == len(all_epi_uncs) makedirs(args.preds_path, isfile=True) # Get prediction column names if args.dataset_type == "multiclass": task_names = [ f"{name}_class_{i}" for name in task_names for i in range(args.multiclass_num_classes) ] else: task_names = task_names # Copy predictions over to full_data for full_index, datapoint in enumerate(full_data): valid_index = full_to_valid_indices.get(full_index, None) preds = (avg_preds[valid_index] if valid_index is not None else ["Invalid SMILES"] * len(task_names)) if args.ensemble_variance: epi_uncs = (all_epi_uncs[valid_index] if valid_index is not None else ["Invalid SMILES"] * len(task_names)) # If extra columns have been dropped, add back in SMILES columns if args.drop_extra_columns: datapoint.row = OrderedDict() smiles_columns = args.smiles_columns for column, smiles in zip(smiles_columns, datapoint.smiles): datapoint.row[column] = smiles # Add predictions columns if args.ensemble_variance: for pred_name, pred, epi_unc in zip(task_names, preds, epi_uncs): datapoint.row[pred_name] = pred datapoint.row[pred_name + "_epi_unc"] = epi_unc else: for pred_name, pred in zip(task_names, preds): datapoint.row[pred_name] = pred # Save with open(args.preds_path, "w") as f: writer = csv.DictWriter(f, fieldnames=full_data[0].row.keys()) writer.writeheader() for datapoint in full_data: writer.writerow(datapoint.row) return avg_preds
def molecule_fingerprint( args: FingerprintArgs, smiles: List[List[str]] = None) -> List[List[Optional[float]]]: """ Loads data and a trained model and uses the model to encode fingerprint vectors for the data. :param args: A :class:`~chemprop.args.PredictArgs` object containing arguments for loading data and a model and making predictions. :param smiles: List of list of SMILES to make predictions on. :return: A list of fingerprint vectors (list of floats) """ print('Loading training args') train_args = load_args(args.checkpoint_paths[0]) # Update args with training arguments if args.fingerprint_type == 'MPN': # only need to supply input features if using FFN latent representation and if model calls for them. validate_feature_sources = False else: validate_feature_sources = True update_prediction_args(predict_args=args, train_args=train_args, validate_feature_sources=validate_feature_sources) args: Union[FingerprintArgs, TrainArgs] #set explicit H option and reaction option reset_featurization_parameters() if args.atom_descriptors == 'feature': set_extra_atom_fdim(train_args.atom_features_size) if args.bond_features_path is not None: set_extra_bond_fdim(train_args.bond_features_size) set_explicit_h(train_args.explicit_h) set_adding_hs(args.adding_h) if train_args.reaction: set_reaction(train_args.reaction, train_args.reaction_mode) elif train_args.reaction_solvent: set_reaction(True, train_args.reaction_mode) print('Loading data') if smiles is not None: full_data = get_data_from_smiles( smiles=smiles, skip_invalid_smiles=False, features_generator=args.features_generator) else: full_data = get_data(path=args.test_path, smiles_columns=args.smiles_columns, target_columns=[], ignore_columns=[], skip_invalid_smiles=False, args=args, store_row=True) print('Validating SMILES') full_to_valid_indices = {} valid_index = 0 for full_index in range(len(full_data)): if all(mol is not None for mol in full_data[full_index].mol): full_to_valid_indices[full_index] = valid_index valid_index += 1 test_data = MoleculeDataset( [full_data[i] for i in sorted(full_to_valid_indices.keys())]) # Edge case if empty list of smiles is provided if len(test_data) == 0: return [None] * len(full_data) print(f'Test size = {len(test_data):,}') # Create data loader test_data_loader = MoleculeDataLoader(dataset=test_data, batch_size=args.batch_size, num_workers=args.num_workers) # Set fingerprint size if args.fingerprint_type == 'MPN': if args.atom_descriptors == "descriptor": # special case when we have 'descriptor' extra dimensions need to be added total_fp_size = ( args.hidden_size + test_data.atom_descriptors_size()) * args.number_of_molecules else: if args.reaction_solvent: total_fp_size = args.hidden_size + args.hidden_size_solvent else: total_fp_size = args.hidden_size * args.number_of_molecules if args.features_only: raise ValueError( 'With features_only models, there is no latent MPN representation. Use last_FFN fingerprint type instead.' ) elif args.fingerprint_type == 'last_FFN': if args.ffn_num_layers != 1: total_fp_size = args.ffn_hidden_size else: raise ValueError( 'With a ffn_num_layers of 1, there is no latent FFN representation. Use MPN fingerprint type instead.' ) else: raise ValueError( f'Fingerprint type {args.fingerprint_type} not supported') all_fingerprints = np.zeros( (len(test_data), total_fp_size, len(args.checkpoint_paths))) # Load model print( f'Encoding smiles into a fingerprint vector from {len(args.checkpoint_paths)} models.' ) for index, checkpoint_path in enumerate( tqdm(args.checkpoint_paths, total=len(args.checkpoint_paths))): model = load_checkpoint(checkpoint_path, device=args.device) scaler, features_scaler, atom_descriptor_scaler, bond_feature_scaler = load_scalers( args.checkpoint_paths[index]) # Normalize features if args.features_scaling or train_args.atom_descriptor_scaling or train_args.bond_feature_scaling: test_data.reset_features_and_targets() if args.features_scaling: test_data.normalize_features(features_scaler) if train_args.atom_descriptor_scaling and args.atom_descriptors is not None: test_data.normalize_features(atom_descriptor_scaler, scale_atom_descriptors=True) if train_args.bond_feature_scaling and args.bond_features_size > 0: test_data.normalize_features(bond_feature_scaler, scale_bond_features=True) # Make fingerprints model_fp = model_fingerprint(model=model, data_loader=test_data_loader, fingerprint_type=args.fingerprint_type) if args.fingerprint_type == 'MPN' and ( args.features_path is not None or args.features_generator ): # truncate any features from MPN fingerprint model_fp = np.array(model_fp)[:, :total_fp_size] all_fingerprints[:, :, index] = model_fp # Save predictions print(f'Saving predictions to {args.preds_path}') # assert len(test_data) == len(all_fingerprints) #TODO: add unit test for this makedirs(args.preds_path, isfile=True) # Set column names fingerprint_columns = [] if args.fingerprint_type == 'MPN': if len(args.checkpoint_paths) == 1: for j in range(total_fp_size // args.number_of_molecules): for k in range(args.number_of_molecules): fingerprint_columns.append(f'fp_{j}_mol_{k}') else: for j in range(total_fp_size // args.number_of_molecules): for i in range(len(args.checkpoint_paths)): for k in range(args.number_of_molecules): fingerprint_columns.append(f'fp_{j}_mol_{k}_model_{i}') else: # args == 'last_FNN' if len(args.checkpoint_paths) == 1: for j in range(total_fp_size): fingerprint_columns.append(f'fp_{j}') else: for j in range(total_fp_size): for i in range(len(args.checkpoint_paths)): fingerprint_columns.append(f'fp_{j}_model_{i}') # Copy predictions over to full_data for full_index, datapoint in enumerate(full_data): valid_index = full_to_valid_indices.get(full_index, None) preds = all_fingerprints[valid_index].reshape( (len(args.checkpoint_paths) * total_fp_size )) if valid_index is not None else ['Invalid SMILES'] * len( args.checkpoint_paths) * total_fp_size for i in range(len(fingerprint_columns)): datapoint.row[fingerprint_columns[i]] = preds[i] # Write predictions with open(args.preds_path, 'w') as f: writer = csv.DictWriter(f, fieldnames=args.smiles_columns + fingerprint_columns, extrasaction='ignore') writer.writeheader() for datapoint in full_data: writer.writerow(datapoint.row) return all_fingerprints
def molecule_fingerprint( args: PredictArgs, smiles: List[List[str]] = None) -> List[List[Optional[float]]]: """ Loads data and a trained model and uses the model to encode fingerprint vectors for the data. :param args: A :class:`~chemprop.args.PredictArgs` object containing arguments for loading data and a model and making predictions. :param smiles: List of list of SMILES to make predictions on. :return: A list of fingerprint vectors (list of floats) """ print('Loading training args') train_args = load_args(args.checkpoint_paths[0]) # Update args with training arguments update_prediction_args(predict_args=args, train_args=train_args, validate_feature_sources=False) args: Union[PredictArgs, TrainArgs] #set explicit H option and reaction option set_explicit_h(train_args.explicit_h) set_reaction(train_args.reaction, train_args.reaction_mode) print('Loading data') if smiles is not None: full_data = get_data_from_smiles( smiles=smiles, skip_invalid_smiles=False, features_generator=args.features_generator) else: full_data = get_data(path=args.test_path, smiles_columns=args.smiles_columns, target_columns=[], ignore_columns=[], skip_invalid_smiles=False, args=args, store_row=True) print('Validating SMILES') full_to_valid_indices = {} valid_index = 0 for full_index in range(len(full_data)): if all(mol is not None for mol in full_data[full_index].mol): full_to_valid_indices[full_index] = valid_index valid_index += 1 test_data = MoleculeDataset( [full_data[i] for i in sorted(full_to_valid_indices.keys())]) # Edge case if empty list of smiles is provided if len(test_data) == 0: return [None] * len(full_data) print(f'Test size = {len(test_data):,}') # Create data loader test_data_loader = MoleculeDataLoader(dataset=test_data, batch_size=args.batch_size, num_workers=args.num_workers) # Load model print(f'Encoding smiles into a fingerprint vector from a single model') if len(args.checkpoint_paths) != 1: raise ValueError( "Fingerprint generation only supports one model, cannot use an ensemble" ) model = load_checkpoint(args.checkpoint_paths[0], device=args.device) scaler, features_scaler, atom_descriptor_scaler, bond_feature_scaler = load_scalers( args.checkpoint_paths[0]) # Normalize features if args.features_scaling or train_args.atom_descriptor_scaling or train_args.bond_feature_scaling: test_data.reset_features_and_targets() if args.features_scaling: test_data.normalize_features(features_scaler) if train_args.atom_descriptor_scaling and args.atom_descriptors is not None: test_data.normalize_features(atom_descriptor_scaler, scale_atom_descriptors=True) if train_args.bond_feature_scaling and args.bond_features_size > 0: test_data.normalize_features(bond_feature_scaler, scale_bond_features=True) # Make fingerprints model_preds = model_fingerprint(model=model, data_loader=test_data_loader) # Save predictions print(f'Saving predictions to {args.preds_path}') assert len(test_data) == len(model_preds) makedirs(args.preds_path, isfile=True) # Copy predictions over to full_data total_hidden_size = args.hidden_size * args.number_of_molecules for full_index, datapoint in enumerate(full_data): valid_index = full_to_valid_indices.get(full_index, None) preds = model_preds[valid_index] if valid_index is not None else [ 'Invalid SMILES' ] * total_hidden_size fingerprint_columns = [f'fp_{i}' for i in range(total_hidden_size)] for i in range(len(fingerprint_columns)): datapoint.row[fingerprint_columns[i]] = preds[i] # Write predictions with open(args.preds_path, 'w') as f: writer = csv.DictWriter(f, fieldnames=args.smiles_columns + fingerprint_columns, extrasaction='ignore') writer.writeheader() for datapoint in full_data: writer.writerow(datapoint.row) return model_preds
def cross_validate(args: TrainArgs, train_func: Callable[[TrainArgs, MoleculeDataset, Logger], Dict[str, List[float]]] ) -> Tuple[float, float]: """ Runs k-fold cross-validation. For each of k splits (folds) of the data, trains and tests a model on that split and aggregates the performance across folds. :param args: A :class:`~chemprop.args.TrainArgs` object containing arguments for loading data and training the Chemprop model. :param train_func: Function which runs training. :return: A tuple containing the mean and standard deviation performance across folds. """ logger = create_logger(name=TRAIN_LOGGER_NAME, save_dir=args.save_dir, quiet=args.quiet) if logger is not None: debug, info = logger.debug, logger.info else: debug = info = print # Initialize relevant variables init_seed = args.seed save_dir = args.save_dir args.task_names = get_task_names(path=args.data_path, smiles_columns=args.smiles_columns, target_columns=args.target_columns, ignore_columns=args.ignore_columns) # Print command line debug('Command line') debug(f'python {" ".join(sys.argv)}') # Print args debug('Args') debug(args) # Save args makedirs(args.save_dir) try: args.save(os.path.join(args.save_dir, 'args.json')) except subprocess.CalledProcessError: debug('Could not write the reproducibility section of the arguments to file, thus omitting this section.') args.save(os.path.join(args.save_dir, 'args.json'), with_reproducibility=False) # set explicit H option and reaction option reset_featurization_parameters(logger=logger) set_explicit_h(args.explicit_h) set_adding_hs(args.adding_h) if args.reaction: set_reaction(args.reaction, args.reaction_mode) elif args.reaction_solvent: set_reaction(True, args.reaction_mode) # Get data debug('Loading data') data = get_data( path=args.data_path, args=args, logger=logger, skip_none_targets=True, data_weights_path=args.data_weights_path ) validate_dataset_type(data, dataset_type=args.dataset_type) args.features_size = data.features_size() if args.atom_descriptors == 'descriptor': args.atom_descriptors_size = data.atom_descriptors_size() args.ffn_hidden_size += args.atom_descriptors_size elif args.atom_descriptors == 'feature': args.atom_features_size = data.atom_features_size() set_extra_atom_fdim(args.atom_features_size) if args.bond_features_path is not None: args.bond_features_size = data.bond_features_size() set_extra_bond_fdim(args.bond_features_size) debug(f'Number of tasks = {args.num_tasks}') if args.target_weights is not None and len(args.target_weights) != args.num_tasks: raise ValueError('The number of provided target weights must match the number and order of the prediction tasks') # Run training on different random seeds for each fold all_scores = defaultdict(list) for fold_num in range(args.num_folds): info(f'Fold {fold_num}') args.seed = init_seed + fold_num args.save_dir = os.path.join(save_dir, f'fold_{fold_num}') makedirs(args.save_dir) data.reset_features_and_targets() # If resuming experiment, load results from trained models test_scores_path = os.path.join(args.save_dir, 'test_scores.json') if args.resume_experiment and os.path.exists(test_scores_path): print('Loading scores') with open(test_scores_path) as f: model_scores = json.load(f) # Otherwise, train the models else: model_scores = train_func(args, data, logger) for metric, scores in model_scores.items(): all_scores[metric].append(scores) all_scores = dict(all_scores) # Convert scores to numpy arrays for metric, scores in all_scores.items(): all_scores[metric] = np.array(scores) # Report results info(f'{args.num_folds}-fold cross validation') # Report scores for each fold contains_nan_scores = False for fold_num in range(args.num_folds): for metric, scores in all_scores.items(): info(f'\tSeed {init_seed + fold_num} ==> test {metric} = {multitask_mean(scores[fold_num], metric):.6f}') if args.show_individual_scores: for task_name, score in zip(args.task_names, scores[fold_num]): info(f'\t\tSeed {init_seed + fold_num} ==> test {task_name} {metric} = {score:.6f}') if np.isnan(score): contains_nan_scores = True # Report scores across folds for metric, scores in all_scores.items(): avg_scores = multitask_mean(scores, axis=1, metric=metric) # average score for each model across tasks mean_score, std_score = np.mean(avg_scores), np.std(avg_scores) info(f'Overall test {metric} = {mean_score:.6f} +/- {std_score:.6f}') if args.show_individual_scores: for task_num, task_name in enumerate(args.task_names): info(f'\tOverall test {task_name} {metric} = ' f'{np.mean(scores[:, task_num]):.6f} +/- {np.std(scores[:, task_num]):.6f}') if contains_nan_scores: info("The metric scores observed for some fold test splits contain 'nan' values. \ This can occur when the test set does not meet the requirements \ for a particular metric, such as having no valid instances of one \ task in the test set or not having positive examples for some classification metrics. \ Before v1.5.1, the default behavior was to ignore nan values in individual folds or tasks \ and still return an overall average for the remaining folds or tasks. The behavior now \ is to include them in the average, converting overall average metrics to 'nan' as well.") # Save scores with open(os.path.join(save_dir, TEST_SCORES_FILE_NAME), 'w') as f: writer = csv.writer(f) header = ['Task'] for metric in args.metrics: header += [f'Mean {metric}', f'Standard deviation {metric}'] + \ [f'Fold {i} {metric}' for i in range(args.num_folds)] writer.writerow(header) if args.dataset_type == 'spectra': # spectra data type has only one score to report row = ['spectra'] for metric, scores in all_scores.items(): task_scores = scores[:,0] mean, std = np.mean(task_scores), np.std(task_scores) row += [mean, std] + task_scores.tolist() writer.writerow(row) else: # all other data types, separate scores by task for task_num, task_name in enumerate(args.task_names): row = [task_name] for metric, scores in all_scores.items(): task_scores = scores[:, task_num] mean, std = np.mean(task_scores), np.std(task_scores) row += [mean, std] + task_scores.tolist() writer.writerow(row) # Determine mean and std score of main metric avg_scores = multitask_mean(all_scores[args.metric], metric=args.metric, axis=1) mean_score, std_score = np.mean(avg_scores), np.std(avg_scores) # Optionally merge and save test preds if args.save_preds: all_preds = pd.concat([pd.read_csv(os.path.join(save_dir, f'fold_{fold_num}', 'test_preds.csv')) for fold_num in range(args.num_folds)]) all_preds.to_csv(os.path.join(save_dir, 'test_preds.csv'), index=False) return mean_score, std_score
def cross_validate( args: TrainArgs, train_func: Callable[[TrainArgs, MoleculeDataset, Logger], Dict[str, List[float]]] ) -> Tuple[float, float]: """ Runs k-fold cross-validation. For each of k splits (folds) of the data, trains and tests a model on that split and aggregates the performance across folds. :param args: A :class:`~chemprop.args.TrainArgs` object containing arguments for loading data and training the Chemprop model. :param train_func: Function which runs training. :return: A tuple containing the mean and standard deviation performance across folds. """ logger = create_logger(name=TRAIN_LOGGER_NAME, save_dir=args.save_dir, quiet=args.quiet) if logger is not None: debug, info = logger.debug, logger.info else: debug = info = print # Initialize relevant variables init_seed = args.seed save_dir = args.save_dir args.task_names = get_task_names(path=args.data_path, smiles_columns=args.smiles_columns, target_columns=args.target_columns, ignore_columns=args.ignore_columns) # Print command line debug('Command line') debug(f'python {" ".join(sys.argv)}') # Print args debug('Args') debug(args) # Save args makedirs(args.save_dir) args.save(os.path.join(args.save_dir, 'args.json')) #set explicit H option and reaction option set_explicit_h(args.explicit_h) set_reaction(args.reaction, args.reaction_mode) # Get data debug('Loading data') data = get_data(path=args.data_path, args=args, smiles_columns=args.smiles_columns, logger=logger, skip_none_targets=True) validate_dataset_type(data, dataset_type=args.dataset_type) args.features_size = data.features_size() if args.atom_descriptors == 'descriptor': args.atom_descriptors_size = data.atom_descriptors_size() args.ffn_hidden_size += args.atom_descriptors_size elif args.atom_descriptors == 'feature': args.atom_features_size = data.atom_features_size() set_extra_atom_fdim(args.atom_features_size) if args.bond_features_path is not None: args.bond_features_size = data.bond_features_size() set_extra_bond_fdim(args.bond_features_size) debug(f'Number of tasks = {args.num_tasks}') # Run training on different random seeds for each fold all_scores = defaultdict(list) for fold_num in range(args.num_folds): info(f'Fold {fold_num}') args.seed = init_seed + fold_num args.save_dir = os.path.join(save_dir, f'fold_{fold_num}') makedirs(args.save_dir) data.reset_features_and_targets() # If resuming experiment, load results from trained models test_scores_path = os.path.join(args.save_dir, 'test_scores.json') if args.resume_experiment and os.path.exists(test_scores_path): print('Loading scores') with open(test_scores_path) as f: model_scores = json.load(f) # Otherwise, train the models else: model_scores = train_func(args, data, logger) for metric, scores in model_scores.items(): all_scores[metric].append(scores) all_scores = dict(all_scores) # Convert scores to numpy arrays for metric, scores in all_scores.items(): all_scores[metric] = np.array(scores) # Report results info(f'{args.num_folds}-fold cross validation') # Report scores for each fold for fold_num in range(args.num_folds): for metric, scores in all_scores.items(): info( f'\tSeed {init_seed + fold_num} ==> test {metric} = {np.nanmean(scores[fold_num]):.6f}' ) if args.show_individual_scores: for task_name, score in zip(args.task_names, scores[fold_num]): info( f'\t\tSeed {init_seed + fold_num} ==> test {task_name} {metric} = {score:.6f}' ) # Report scores across folds for metric, scores in all_scores.items(): avg_scores = np.nanmean( scores, axis=1) # average score for each model across tasks mean_score, std_score = np.nanmean(avg_scores), np.nanstd(avg_scores) info(f'Overall test {metric} = {mean_score:.6f} +/- {std_score:.6f}') if args.show_individual_scores: for task_num, task_name in enumerate(args.task_names): info( f'\tOverall test {task_name} {metric} = ' f'{np.nanmean(scores[:, task_num]):.6f} +/- {np.nanstd(scores[:, task_num]):.6f}' ) # Save scores with open(os.path.join(save_dir, TEST_SCORES_FILE_NAME), 'w') as f: writer = csv.writer(f) header = ['Task'] for metric in args.metrics: header += [f'Mean {metric}', f'Standard deviation {metric}'] + \ [f'Fold {i} {metric}' for i in range(args.num_folds)] writer.writerow(header) for task_num, task_name in enumerate(args.task_names): row = [task_name] for metric, scores in all_scores.items(): task_scores = scores[:, task_num] mean, std = np.nanmean(task_scores), np.nanstd(task_scores) row += [mean, std] + task_scores.tolist() writer.writerow(row) # Determine mean and std score of main metric avg_scores = np.nanmean(all_scores[args.metric], axis=1) mean_score, std_score = np.nanmean(avg_scores), np.nanstd(avg_scores) # Optionally merge and save test preds if args.save_preds: all_preds = pd.concat([ pd.read_csv( os.path.join(save_dir, f'fold_{fold_num}', 'test_preds.csv')) for fold_num in range(args.num_folds) ]) all_preds.to_csv(os.path.join(save_dir, 'test_preds.csv'), index=False) return mean_score, std_score