コード例 #1
0
def model_fingerprint(model: MoleculeModel,
                      data_loader: MoleculeDataLoader,
                      fingerprint_type: str = 'MPN',
                      disable_progress_bar: bool = False) -> List[List[float]]:
    """
    Encodes the provided molecules into the latent fingerprint vectors, according to the provided model.

    :param model: A :class:`~chemprop.models.model.MoleculeModel`.
    :param data_loader: A :class:`~chemprop.data.data.MoleculeDataLoader`.
    :param disable_progress_bar: Whether to disable the progress bar.
    :return: A list of fingerprint vector lists.
    """
    model.eval()

    fingerprints = []

    for batch in tqdm(data_loader, disable=disable_progress_bar, leave=False):
        # Prepare batch
        batch: MoleculeDataset
        mol_batch, features_batch, atom_descriptors_batch, atom_features_batch, bond_features_batch = \
            batch.batch_graph(), batch.features(), batch.atom_descriptors(), batch.atom_features(), batch.bond_features()

        # Make predictions
        with torch.no_grad():
            batch_fp = model.fingerprint(mol_batch, features_batch,
                                         atom_descriptors_batch,
                                         atom_features_batch,
                                         bond_features_batch, fingerprint_type)

        # Collect vectors
        batch_fp = batch_fp.data.cpu().tolist()

        fingerprints.extend(batch_fp)

    return fingerprints
コード例 #2
0
def prepare_model(args):
    args.output_size = args.num_tasks
    inv_model = MoleculeModel(
        classification=args.dataset_type == 'classification',
        multiclass=args.dataset_type == 'multiclass')
    inv_model.create_encoder(
        args)  # phi(x), shared across source and target domain
    inv_model.create_ffn(args)  # source function
    inv_model.src_ffn = inv_model.ffn
    inv_model.create_ffn(args)  # target function
    initialize_weights(inv_model)
    return inv_model.cuda()
コード例 #3
0
ファイル: utils.py プロジェクト: yxgu2353/chemprop
def save_checkpoint(path: str,
                    model: MoleculeModel,
                    scaler: StandardScaler = None,
                    features_scaler: StandardScaler = None,
                    args: TrainArgs = None) -> None:
    """
    Saves a model checkpoint.

    :param model: A :class:`~chemprop.models.model.MoleculeModel`.
    :param scaler: A :class:`~chemprop.data.scaler.StandardScaler` fitted on the data.
    :param features_scaler: A :class:`~chemprop.data.scaler.StandardScaler` fitted on the features.
    :param args: The :class:`~chemprop.args.TrainArgs` object containing the arguments the model was trained with.
    :param path: Path where checkpoint will be saved.
    """
    # Convert args to namespace for backwards compatibility
    if args is not None:
        args = Namespace(**args.as_dict())

    state = {
        'args': args,
        'state_dict': model.state_dict(),
        'data_scaler': {
            'means': scaler.means,
            'stds': scaler.stds
        } if scaler is not None else None,
        'features_scaler': {
            'means': features_scaler.means,
            'stds': features_scaler.stds
        } if features_scaler is not None else None
    }
    torch.save(state, path)
コード例 #4
0
def save_checkpoint(path: str,
                    model: MoleculeModel,
                    scaler: StandardScaler = None,
                    features_scaler: StandardScaler = None,
                    args: Namespace = None):
    """
    Saves a model checkpoint.

    :param model: A MoleculeModel.
    :param scaler: A StandardScaler fitted on the data.
    :param features_scaler: A StandardScaler fitted on the features.
    :param args: Arguments namespace.
    :param path: Path where checkpoint will be saved.
    """
    state = {
        'args': args,
        'state_dict': model.state_dict(),
        'data_scaler': {
            'means': scaler.means,
            'stds': scaler.stds
        } if scaler is not None else None,
        'features_scaler': {
            'means': features_scaler.means,
            'stds': features_scaler.stds
        } if features_scaler is not None else None
    }
    torch.save(state, path)
コード例 #5
0
def save_checkpoint(path: str,
                    model: MoleculeModel,
                    scaler: StandardScaler = None,
                    features_scaler: StandardScaler = None,
                    args: TrainArgs = None):
    """
    Saves a model checkpoint.

    :param model: A MoleculeModel.
    :param scaler: A StandardScaler fitted on the data.
    :param features_scaler: A StandardScaler fitted on the features.
    :param args: Arguments.
    :param path: Path where checkpoint will be saved.
    """
    # Convert args to namespace for backwards compatibility
    if args is not None:
        args = Namespace(**args.as_dict())

    state = {
        'args': args,
        'state_dict': model.state_dict(),
        'data_scaler': {
            'means': scaler.means,
            'stds': scaler.stds
        } if scaler is not None else None,
        'features_scaler': {
            'means': features_scaler.means,
            'stds': features_scaler.stds
        } if features_scaler is not None else None
    }
    torch.save(state, path)
コード例 #6
0
def save_checkpoint(
    path: str,
    model: MoleculeModel,
    scaler: StandardScaler = None,
    features_scaler: StandardScaler = None,
    atom_descriptor_scaler: StandardScaler = None,
    bond_feature_scaler: StandardScaler = None,
    args: TrainArgs = None,
) -> None:
    """
    Saves a model checkpoint.

    :param model: A :class:`~chemprop.models.model.MoleculeModel`.
    :param scaler: A :class:`~chemprop.data.scaler.StandardScaler` fitted on the data.
    :param features_scaler: A :class:`~chemprop.data.scaler.StandardScaler` fitted on the features.
    :param atom_descriptor_scaler: A :class:`~chemprop.data.scaler.StandardScaler` fitted on the atom descriptors.
    :param bond_feature_scaler: A :class:`~chemprop.data.scaler.StandardScaler` fitted on the bond_fetaures.
    :param args: The :class:`~chemprop.args.TrainArgs` object containing the arguments the model was trained with.
    :param path: Path where checkpoint will be saved.
    """
    # Convert args to namespace for backwards compatibility
    if args is not None:
        args = Namespace(**args.as_dict())

    data_scaler = {
        "means": scaler.means,
        "stds": scaler.stds
    } if scaler is not None else None
    if features_scaler is not None:
        features_scaler = {
            "means": features_scaler.means,
            "stds": features_scaler.stds
        }
    if atom_descriptor_scaler is not None:
        atom_descriptor_scaler = {
            "means": atom_descriptor_scaler.means,
            "stds": atom_descriptor_scaler.stds,
        }
    if bond_feature_scaler is not None:
        bond_feature_scaler = {
            "means": bond_feature_scaler.means,
            "stds": bond_feature_scaler.stds
        }

    state = {
        "args": args,
        "state_dict": model.state_dict(),
        "data_scaler": data_scaler,
        "features_scaler": features_scaler,
        "atom_descriptor_scaler": atom_descriptor_scaler,
        "bond_feature_scaler": bond_feature_scaler,
    }
    torch.save(state, path)
コード例 #7
0
def predict(model: MoleculeModel,
            data_loader: MoleculeDataLoader,
            disable_progress_bar: bool = False,
            scaler: StandardScaler = None) -> List[List[float]]:
    """
    Makes predictions on a dataset using an ensemble of models.

    :param model: A :class:`~chemprop.models.model.MoleculeModel`.
    :param data_loader: A :class:`~chemprop.data.data.MoleculeDataLoader`.
    :param disable_progress_bar: Whether to disable the progress bar.
    :param scaler: A :class:`~chemprop.features.scaler.StandardScaler` object fit on the training targets.
    :return: A list of lists of predictions. The outer list is molecules while the inner list is tasks.
    """
    model.eval()

    preds = []

    for batch in tqdm(data_loader, disable=disable_progress_bar, leave=False):
        # Prepare batch
        batch: MoleculeDataset
        mol_batch, features_batch, target_batch, atom_descriptors_batch, atom_features_batch, bond_features_batch, smiles_batch = \
            batch.batch_graph(), batch.features(), batch.targets(), batch.atom_descriptors(), \
            batch.atom_features(), batch.bond_features(), batch.smiles_one_hot_encoding()
        # Make predictions
        with torch.no_grad():
            batch_preds = model(mol_batch, features_batch,
                                atom_descriptors_batch, atom_features_batch,
                                bond_features_batch, smiles_batch)

        batch_preds = batch_preds.data.cpu().numpy()

        # Inverse scale if regression
        if scaler is not None:
            batch_preds = scaler.inverse_transform(batch_preds)

        # Collect vectors
        batch_preds = batch_preds.tolist()
        preds.extend(batch_preds)

    return preds
コード例 #8
0
    def objective(hyperparams: Dict[str, Union[int, float]],
                  seed: int) -> Dict:
        # Convert hyperparams from float to int when necessary
        for key in INT_KEYS:
            hyperparams[key] = int(hyperparams[key])

        # Copy args
        hyper_args = deepcopy(args)

        # Update args with hyperparams
        if args.save_dir is not None:
            folder_name = '_'.join(f'{key}_{value}'
                                   for key, value in hyperparams.items())
            hyper_args.save_dir = os.path.join(hyper_args.save_dir,
                                               folder_name)

        for key, value in hyperparams.items():
            setattr(hyper_args, key, value)

        hyper_args.ffn_hidden_size = hyper_args.hidden_size

        # Cross validate
        mean_score, std_score = cross_validate(args=hyper_args,
                                               train_func=run_training)

        # Record results
        temp_model = MoleculeModel(hyper_args)
        num_params = param_count(temp_model)
        logger.info(f'Trial results with seed {seed}')
        logger.info(hyperparams)
        logger.info(f'num params: {num_params:,}')
        logger.info(f'{mean_score} +/- {std_score} {hyper_args.metric}')

        # Deal with nan
        if np.isnan(mean_score):
            if hyper_args.dataset_type == 'classification':
                mean_score = 0
            else:
                raise ValueError(
                    'Can\'t handle nan score for non-classification dataset.')

        loss = (1 if hyper_args.minimize_score else -1) * mean_score

        return {
            'loss': loss,
            'status': 'ok',
            'mean_score': mean_score,
            'std_score': std_score,
            'hyperparams': hyperparams,
            'num_params': num_params,
            'seed': seed,
        }
コード例 #9
0
ファイル: utils.py プロジェクト: phseidl/chemprop
def load_checkpoint(path: str,
                    device: torch.device = None,
                    logger: logging.Logger = None) -> MoleculeModel:
    """
    Loads a model checkpoint.

    :param path: Path where checkpoint is saved.
    :param device: Device where the model will be moved.
    :param logger: A logger for recording output.
    :return: The loaded :class:`~chemprop.models.model.MoleculeModel`.
    """
    if logger is not None:
        debug, info = logger.debug, logger.info
    else:
        debug = info = print

    # Load model and args
    state = torch.load(path, map_location=lambda storage, loc: storage)
    args = TrainArgs()
    args.from_dict(vars(state['args']), skip_unsettable=True)
    loaded_state_dict = state['state_dict']

    if device is not None:
        args.device = device

    # Build model
    model = MoleculeModel(args)
    model_state_dict = model.state_dict()

    # Skip missing parameters and parameters of mismatched size
    pretrained_state_dict = {}
    for loaded_param_name in loaded_state_dict.keys():
        # Backward compatibility for parameter names
        if re.match(r'(encoder\.encoder\.)([Wc])', loaded_param_name):
            param_name = loaded_param_name.replace('encoder.encoder', 'encoder.encoder.0')
        else:
            param_name = loaded_param_name

        # Load pretrained parameter, skipping unmatched parameters
        if param_name not in model_state_dict:
            info(f'Warning: Pretrained parameter "{loaded_param_name}" cannot be found in model parameters.')
        elif model_state_dict[param_name].shape != loaded_state_dict[loaded_param_name].shape:
            info(f'Warning: Pretrained parameter "{loaded_param_name}" '
                 f'of shape {loaded_state_dict[loaded_param_name].shape} does not match corresponding '
                 f'model parameter of shape {model_state_dict[param_name].shape}.')
        else:
            debug(f'Loading pretrained parameter "{loaded_param_name}".')
            pretrained_state_dict[param_name] = loaded_state_dict[loaded_param_name]

    # Load pretrained weights
    model_state_dict.update(pretrained_state_dict)
    model.load_state_dict(model_state_dict)

    if args.cuda:
        debug('Moving model to cuda')
    model = model.to(args.device)

    return model
コード例 #10
0
    def objective(hyperparams: Dict[str, Union[int, float]]) -> float:
        # Convert hyperparams from float to int when necessary
        for key in INT_KEYS:
            hyperparams[key] = int(hyperparams[key])

        # Copy args
        hyper_args = deepcopy(args)

        # Update args with hyperparams
        if args.save_dir is not None:
            folder_name = "_".join(f"{key}_{value}"
                                   for key, value in hyperparams.items())
            hyper_args.save_dir = os.path.join(hyper_args.save_dir,
                                               folder_name)

        for key, value in hyperparams.items():
            setattr(hyper_args, key, value)

        hyper_args.ffn_hidden_size = hyper_args.hidden_size

        # Record hyperparameters
        logger.info(hyperparams)

        # Cross validate
        mean_score, std_score = cross_validate(args=hyper_args,
                                               train_func=run_training)

        # Record results
        temp_model = MoleculeModel(hyper_args)
        num_params = param_count(temp_model)
        logger.info(f"num params: {num_params:,}")
        logger.info(f"{mean_score} +/- {std_score} {hyper_args.metric}")

        results.append({
            "mean_score": mean_score,
            "std_score": std_score,
            "hyperparams": hyperparams,
            "num_params": num_params,
        })

        # Deal with nan
        if np.isnan(mean_score):
            if hyper_args.dataset_type == "classification":
                mean_score = 0
            else:
                raise ValueError(
                    "Can't handle nan score for non-classification dataset.")

        return (1 if hyper_args.minimize_score else -1) * mean_score
コード例 #11
0
def predict(
    model: MoleculeModel,
    data_loader: MoleculeDataLoader,
    disable_progress_bar: bool = False,
    scaler: StandardScaler = None,
    return_unc_parameters: bool = False,
    dropout_prob: float = 0.0,
) -> List[List[float]]:
    """
    Makes predictions on a dataset using an ensemble of models.

    :param model: A :class:`~chemprop.models.model.MoleculeModel`.
    :param data_loader: A :class:`~chemprop.data.data.MoleculeDataLoader`.
    :param disable_progress_bar: Whether to disable the progress bar.
    :param scaler: A :class:`~chemprop.features.scaler.StandardScaler` object fit on the training targets.
    :param return_unc_parameters: A bool indicating whether additional uncertainty parameters would be returned alongside the mean predictions.
    :param dropout_prob: For use during uncertainty prediction only. The propout probability used in generating a dropout ensemble.
    :return: A list of lists of predictions. The outer list is molecules while the inner list is tasks. If returning uncertainty parameters as well,
        it is a tuple of lists of lists, of a length depending on how many uncertainty parameters are appropriate for the loss function.
    """
    model.eval()

    # Activate dropout layers to work during inference for uncertainty estimation
    if dropout_prob > 0.0:

        def activate_dropout_(model):
            return activate_dropout(model, dropout_prob)

        model.apply(activate_dropout_)

    preds = []

    var, lambdas, alphas, betas = [], [], [], [
    ]  # only used if returning uncertainty parameters

    for batch in tqdm(data_loader, disable=disable_progress_bar, leave=False):
        # Prepare batch
        batch: MoleculeDataset
        mol_batch = batch.batch_graph()
        features_batch = batch.features()
        atom_descriptors_batch = batch.atom_descriptors()
        atom_features_batch = batch.atom_features()
        bond_features_batch = batch.bond_features()

        # Make predictions
        with torch.no_grad():
            batch_preds = model(
                mol_batch,
                features_batch,
                atom_descriptors_batch,
                atom_features_batch,
                bond_features_batch,
            )

        batch_preds = batch_preds.data.cpu().numpy()

        if model.loss_function == "mve":
            batch_preds, batch_var = np.split(batch_preds, 2, axis=1)
        elif model.loss_function == "dirichlet":
            if model.classification:
                batch_alphas = np.reshape(
                    batch_preds,
                    [batch_preds.shape[0], batch_preds.shape[1] // 2, 2])
                batch_preds = batch_alphas[:, :, 1] / np.sum(
                    batch_alphas, axis=2)  # shape(data, tasks, 2)
            elif model.multiclass:
                batch_alphas = batch_preds
                batch_preds = batch_preds / np.sum(
                    batch_alphas, axis=2,
                    keepdims=True)  # shape(data, tasks, num_classes)
        elif model.loss_function == 'evidential':  # regression
            batch_preds, batch_lambdas, batch_alphas, batch_betas = np.split(
                batch_preds, 4, axis=1)

        # Inverse scale if regression
        if scaler is not None:
            batch_preds = scaler.inverse_transform(batch_preds)
            if model.loss_function == "mve":
                batch_var = batch_var * scaler.stds**2
            elif model.loss_function == "evidential":
                batch_betas = batch_betas * scaler.stds**2

        # Collect vectors
        batch_preds = batch_preds.tolist()
        preds.extend(batch_preds)
        if model.loss_function == "mve":
            var.extend(batch_var.tolist())
        elif model.loss_function == "dirichlet" and model.classification:
            alphas.extend(batch_alphas.tolist())
        elif model.loss_function == "evidential":  # regression
            lambdas.extend(batch_lambdas.tolist())
            alphas.extend(batch_alphas.tolist())
            betas.extend(batch_betas.tolist())

    if return_unc_parameters:
        if model.loss_function == "mve":
            return preds, var
        elif model.loss_function == "dirichlet":
            return preds, alphas
        elif model.loss_function == "evidential":
            return preds, lambdas, alphas, betas

    return preds
コード例 #12
0
def run_training(args: TrainArgs,
                 data: MoleculeDataset,
                 logger: Logger = None) -> Dict[str, List[float]]:
    """
    Loads data, trains a Chemprop model, and returns test scores for the model checkpoint with the highest validation score.

    :param args: A :class:`~chemprop.args.TrainArgs` object containing arguments for
                 loading data and training the Chemprop model.
    :param data: A :class:`~chemprop.data.MoleculeDataset` containing the data.
    :param logger: A logger to record output.
    :return: A dictionary mapping each metric in :code:`args.metrics` to a list of values for each task.

    """
    if logger is not None:
        debug, info = logger.debug, logger.info
    else:
        debug = info = print

    # Set pytorch seed for random initial weights
    torch.manual_seed(args.pytorch_seed)

    # Split data
    debug(f'Splitting data with seed {args.seed}')
    if args.separate_test_path:
        test_data = get_data(
            path=args.separate_test_path,
            args=args,
            features_path=args.separate_test_features_path,
            atom_descriptors_path=args.separate_test_atom_descriptors_path,
            bond_features_path=args.separate_test_bond_features_path,
            phase_features_path=args.separate_test_phase_features_path,
            smiles_columns=args.smiles_columns,
            logger=logger)
    if args.separate_val_path:
        val_data = get_data(
            path=args.separate_val_path,
            args=args,
            features_path=args.separate_val_features_path,
            atom_descriptors_path=args.separate_val_atom_descriptors_path,
            bond_features_path=args.separate_val_bond_features_path,
            phase_features_path=args.separate_val_phase_features_path,
            smiles_columns=args.smiles_columns,
            logger=logger)

    if args.separate_val_path and args.separate_test_path:
        train_data = data
    elif args.separate_val_path:
        train_data, _, test_data = split_data(data=data,
                                              split_type=args.split_type,
                                              sizes=(0.8, 0.0, 0.2),
                                              seed=args.seed,
                                              num_folds=args.num_folds,
                                              args=args,
                                              logger=logger)
    elif args.separate_test_path:
        train_data, val_data, _ = split_data(data=data,
                                             split_type=args.split_type,
                                             sizes=(0.8, 0.2, 0.0),
                                             seed=args.seed,
                                             num_folds=args.num_folds,
                                             args=args,
                                             logger=logger)
    else:
        train_data, val_data, test_data = split_data(
            data=data,
            split_type=args.split_type,
            sizes=args.split_sizes,
            seed=args.seed,
            num_folds=args.num_folds,
            args=args,
            logger=logger)

    if args.dataset_type == 'classification':
        class_sizes = get_class_sizes(data)
        debug('Class sizes')
        for i, task_class_sizes in enumerate(class_sizes):
            debug(
                f'{args.task_names[i]} '
                f'{", ".join(f"{cls}: {size * 100:.2f}%" for cls, size in enumerate(task_class_sizes))}'
            )

    if args.save_smiles_splits:
        save_smiles_splits(
            data_path=args.data_path,
            save_dir=args.save_dir,
            task_names=args.task_names,
            features_path=args.features_path,
            train_data=train_data,
            val_data=val_data,
            test_data=test_data,
            smiles_columns=args.smiles_columns,
            logger=logger,
        )

    if args.features_scaling:
        features_scaler = train_data.normalize_features(replace_nan_token=0)
        val_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)
    else:
        features_scaler = None

    if args.atom_descriptor_scaling and args.atom_descriptors is not None:
        atom_descriptor_scaler = train_data.normalize_features(
            replace_nan_token=0, scale_atom_descriptors=True)
        val_data.normalize_features(atom_descriptor_scaler,
                                    scale_atom_descriptors=True)
        test_data.normalize_features(atom_descriptor_scaler,
                                     scale_atom_descriptors=True)
    else:
        atom_descriptor_scaler = None

    if args.bond_feature_scaling and args.bond_features_size > 0:
        bond_feature_scaler = train_data.normalize_features(
            replace_nan_token=0, scale_bond_features=True)
        val_data.normalize_features(bond_feature_scaler,
                                    scale_bond_features=True)
        test_data.normalize_features(bond_feature_scaler,
                                     scale_bond_features=True)
    else:
        bond_feature_scaler = None

    args.train_data_size = len(train_data)

    debug(
        f'Total size = {len(data):,} | '
        f'train size = {len(train_data):,} | val size = {len(val_data):,} | test size = {len(test_data):,}'
    )

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    if args.dataset_type == 'regression':
        debug('Fitting scaler')
        scaler = train_data.normalize_targets()
    elif args.dataset_type == 'spectra':
        debug(
            'Normalizing spectra and excluding spectra regions based on phase')
        args.spectra_phase_mask = load_phase_mask(args.spectra_phase_mask_path)
        for dataset in [train_data, test_data, val_data]:
            data_targets = normalize_spectra(
                spectra=dataset.targets(),
                phase_features=dataset.phase_features(),
                phase_mask=args.spectra_phase_mask,
                excluded_sub_value=None,
                threshold=args.spectra_target_floor,
            )
            dataset.set_targets(data_targets)
        scaler = None
    else:
        scaler = None

    # Get loss function
    loss_func = get_loss_func(args)

    # Set up test set evaluation
    test_smiles, test_targets = test_data.smiles(), test_data.targets()
    if args.dataset_type == 'multiclass':
        sum_test_preds = np.zeros(
            (len(test_smiles), args.num_tasks, args.multiclass_num_classes))
    else:
        sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    # Automatically determine whether to cache
    if len(data) <= args.cache_cutoff:
        set_cache_graph(True)
        num_workers = 0
    else:
        set_cache_graph(False)
        num_workers = args.num_workers

    # Create data loaders
    train_data_loader = MoleculeDataLoader(dataset=train_data,
                                           batch_size=args.batch_size,
                                           num_workers=num_workers,
                                           class_balance=args.class_balance,
                                           shuffle=True,
                                           seed=args.seed)
    val_data_loader = MoleculeDataLoader(dataset=val_data,
                                         batch_size=args.batch_size,
                                         num_workers=num_workers)
    test_data_loader = MoleculeDataLoader(dataset=test_data,
                                          batch_size=args.batch_size,
                                          num_workers=num_workers)

    if args.class_balance:
        debug(
            f'With class_balance, effective train size = {train_data_loader.iter_size:,}'
        )

    # Train ensemble of models
    for model_idx in range(args.ensemble_size):
        # Tensorboard writer
        save_dir = os.path.join(args.save_dir, f'model_{model_idx}')
        makedirs(save_dir)
        try:
            writer = SummaryWriter(log_dir=save_dir)
        except:
            writer = SummaryWriter(logdir=save_dir)

        # Load/build model
        if args.checkpoint_paths is not None:
            debug(
                f'Loading model {model_idx} from {args.checkpoint_paths[model_idx]}'
            )
            model = load_checkpoint(args.checkpoint_paths[model_idx],
                                    logger=logger)
        else:
            debug(f'Building model {model_idx}')
            model = MoleculeModel(args)

        # Optionally, overwrite weights:
        if args.checkpoint_frzn is not None:
            debug(
                f'Loading and freezing parameters from {args.checkpoint_frzn}.'
            )
            model = load_frzn_model(model=model,
                                    path=args.checkpoint_frzn,
                                    current_args=args,
                                    logger=logger)

        debug(model)

        if args.checkpoint_frzn is not None:
            debug(f'Number of unfrozen parameters = {param_count(model):,}')
            debug(f'Total number of parameters = {param_count_all(model):,}')
        else:
            debug(f'Number of parameters = {param_count_all(model):,}')

        if args.cuda:
            debug('Moving model to cuda')
        model = model.to(args.device)

        # Ensure that model is saved in correct location for evaluation if 0 epochs
        save_checkpoint(os.path.join(save_dir, MODEL_FILE_NAME), model, scaler,
                        features_scaler, atom_descriptor_scaler,
                        bond_feature_scaler, args)

        # Optimizers
        optimizer = build_optimizer(model, args)

        # Learning rate schedulers
        scheduler = build_lr_scheduler(optimizer, args)

        # Run training
        best_score = float('inf') if args.minimize_score else -float('inf')
        best_epoch, n_iter = 0, 0
        for epoch in trange(args.epochs):
            debug(f'Epoch {epoch}')
            n_iter = train(model=model,
                           data_loader=train_data_loader,
                           loss_func=loss_func,
                           optimizer=optimizer,
                           scheduler=scheduler,
                           args=args,
                           n_iter=n_iter,
                           logger=logger,
                           writer=writer)
            if isinstance(scheduler, ExponentialLR):
                scheduler.step()
            val_scores = evaluate(model=model,
                                  data_loader=val_data_loader,
                                  num_tasks=args.num_tasks,
                                  metrics=args.metrics,
                                  dataset_type=args.dataset_type,
                                  scaler=scaler,
                                  logger=logger)

            for metric, scores in val_scores.items():
                # Average validation score
                avg_val_score = np.nanmean(scores)
                debug(f'Validation {metric} = {avg_val_score:.6f}')
                writer.add_scalar(f'validation_{metric}', avg_val_score,
                                  n_iter)

                if args.show_individual_scores:
                    # Individual validation scores
                    for task_name, val_score in zip(args.task_names, scores):
                        debug(
                            f'Validation {task_name} {metric} = {val_score:.6f}'
                        )
                        writer.add_scalar(f'validation_{task_name}_{metric}',
                                          val_score, n_iter)

            # Save model checkpoint if improved validation score
            avg_val_score = np.nanmean(val_scores[args.metric])
            if args.minimize_score and avg_val_score < best_score or \
                    not args.minimize_score and avg_val_score > best_score:
                best_score, best_epoch = avg_val_score, epoch
                save_checkpoint(os.path.join(save_dir,
                                             MODEL_FILE_NAME), model, scaler,
                                features_scaler, atom_descriptor_scaler,
                                bond_feature_scaler, args)

        # Evaluate on test set using model with best validation score
        info(
            f'Model {model_idx} best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}'
        )
        model = load_checkpoint(os.path.join(save_dir, MODEL_FILE_NAME),
                                device=args.device,
                                logger=logger)

        test_preds = predict(model=model,
                             data_loader=test_data_loader,
                             scaler=scaler)
        test_scores = evaluate_predictions(preds=test_preds,
                                           targets=test_targets,
                                           num_tasks=args.num_tasks,
                                           metrics=args.metrics,
                                           dataset_type=args.dataset_type,
                                           logger=logger)

        if len(test_preds) != 0:
            sum_test_preds += np.array(test_preds)

        # Average test score
        for metric, scores in test_scores.items():
            avg_test_score = np.nanmean(scores)
            info(f'Model {model_idx} test {metric} = {avg_test_score:.6f}')
            writer.add_scalar(f'test_{metric}', avg_test_score, 0)

            if args.show_individual_scores and args.dataset_type != 'spectra':
                # Individual test scores
                for task_name, test_score in zip(args.task_names, scores):
                    info(
                        f'Model {model_idx} test {task_name} {metric} = {test_score:.6f}'
                    )
                    writer.add_scalar(f'test_{task_name}_{metric}', test_score,
                                      n_iter)
        writer.close()

    # Evaluate ensemble on test set
    avg_test_preds = (sum_test_preds / args.ensemble_size).tolist()

    ensemble_scores = evaluate_predictions(preds=avg_test_preds,
                                           targets=test_targets,
                                           num_tasks=args.num_tasks,
                                           metrics=args.metrics,
                                           dataset_type=args.dataset_type,
                                           logger=logger)

    for metric, scores in ensemble_scores.items():
        # Average ensemble score
        avg_ensemble_test_score = np.nanmean(scores)
        info(f'Ensemble test {metric} = {avg_ensemble_test_score:.6f}')

        # Individual ensemble scores
        if args.show_individual_scores:
            for task_name, ensemble_score in zip(args.task_names, scores):
                info(
                    f'Ensemble test {task_name} {metric} = {ensemble_score:.6f}'
                )

    # Save scores
    with open(os.path.join(args.save_dir, 'test_scores.json'), 'w') as f:
        json.dump(ensemble_scores, f, indent=4, sort_keys=True)

    # Optionally save test preds
    if args.save_preds:
        test_preds_dataframe = pd.DataFrame(
            data={'smiles': test_data.smiles()})

        for i, task_name in enumerate(args.task_names):
            test_preds_dataframe[task_name] = [
                pred[i] for pred in avg_test_preds
            ]

        test_preds_dataframe.to_csv(os.path.join(args.save_dir,
                                                 'test_preds.csv'),
                                    index=False)

    return ensemble_scores
def train_gp(
        model,
        train_data,
        val_data,
        num_workers,
        cache,
        metric_func,
        scaler,
        features_scaler,
        args,
        save_dir):
    
    
    # create data loaders for gp (allows different batch size)
    train_data_loader = MoleculeDataLoader(
        dataset=train_data,
        batch_size=args.batch_size_gp,
        num_workers=num_workers,
        cache=cache,
        class_balance=args.class_balance,
        shuffle=True,
        seed=args.seed
    )
    val_data_loader = MoleculeDataLoader(
        dataset=val_data,
        batch_size=args.batch_size_gp,
        num_workers=num_workers,
        cache=cache
    )
    
    # feature_extractor
    model.featurizer = True
    feature_extractor = model
    
    # inducing points
    inducing_points = initial_inducing_points(
        train_data_loader,
        feature_extractor,
        args
        )
    
    # GP layer
    gp_layer = GPLayer(inducing_points, args.num_tasks)
    
    # full DKL model
    model = copy.deepcopy(DKLMoleculeModel(feature_extractor, gp_layer))
    
    # likelihood
    # rank 0 restricts to diagonal matrix
    likelihood = gpytorch.likelihoods.MultitaskGaussianLikelihood(num_tasks=12, rank=0)

    # model and likelihood to CUDA
    if args.cuda:
        model.cuda()
        likelihood.cuda()

    # loss object
    mll = gpytorch.mlls.VariationalELBO(likelihood, model.gp_layer, num_data=args.train_data_size)
    
    # optimizer
    params_list = [
        {'params': model.feature_extractor.parameters(), 'weight_decay': args.weight_decay_gp},
        {'params': model.gp_layer.hyperparameters()},
        {'params': model.gp_layer.variational_parameters()},
        {'params': likelihood.parameters()},
    ]    
    optimizer = torch.optim.Adam(params_list, lr = args.init_lr_gp)    
    
    # scheduler
    num_params = len(params_list)
    scheduler = NoamLR(
        optimizer=optimizer,
        warmup_epochs=[args.warmup_epochs_gp]*num_params,
        total_epochs=[args.noam_epochs_gp]*num_params,
        steps_per_epoch=args.train_data_size // args.batch_size_gp,
        init_lr=[args.init_lr_gp]*num_params,
        max_lr=[args.max_lr_gp]*num_params,
        final_lr=[args.final_lr_gp]*num_params)
        
    
    print("----------GP training----------")
    
    # training loop
    best_score = float('inf') if args.minimize_score else -float('inf')
    best_epoch, n_iter = 0, 0
    for epoch in range(args.epochs_gp):
        print(f'GP epoch {epoch}')
        
        if epoch == args.noam_epochs_gp:
            scheduler = scheduler_const([args.final_lr_gp])
    
        n_iter = train(
                model=model,
                data_loader=train_data_loader,
                loss_func=mll,
                optimizer=optimizer,
                scheduler=scheduler,
                args=args,
                n_iter=n_iter,
                gp_switch=True,
                likelihood = likelihood
            )
    
        val_scores = evaluate(
            model=model,
            data_loader=val_data_loader,
            args=args,
            num_tasks=args.num_tasks,
            metric_func=metric_func,
            dataset_type=args.dataset_type,
            scaler=scaler
        )

        # Average validation score
        avg_val_score = np.nanmean(val_scores)
        print(f'Validation {args.metric} = {avg_val_score:.6f}')
        wandb.log({"Validation MAE": avg_val_score})

        # Save model AND LIKELIHOOD checkpoint if improved validation score
        if args.minimize_score and avg_val_score < best_score or \
                not args.minimize_score and avg_val_score > best_score:
            best_score, best_epoch = avg_val_score, epoch
            save_checkpoint(os.path.join(save_dir, 'DKN_model.pt'), model, scaler, features_scaler, args)
            best_likelihood = copy.deepcopy(likelihood)
            
            
    # load model with best validation score
    # NOTE: TEMPLATE MUST BE NEWLY INSTANTIATED MODEL
    print(f'Loading model with best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}')
    model = load_checkpoint(os.path.join(save_dir, 'DKN_model.pt'), device=args.device, logger=None,
                            template = DKLMoleculeModel(MoleculeModel(args, featurizer=True), gp_layer))

    
    return model, best_likelihood
コード例 #14
0
def load_checkpoint(path: str,
                    device: torch.device = None,
                    logger: logging.Logger = None,
                    template=None) -> MoleculeModel:
    """
    Loads a model checkpoint.

    :param path: Path where checkpoint is saved.
    :param device: Device where the model will be moved.
    :param logger: A logger.
    :return: The loaded MoleculeModel.
    """
    if logger is not None:
        debug, info = logger.debug, logger.info
    else:
        debug = info = print

    # Load model and args
    state = torch.load(path, map_location=lambda storage, loc: storage)
    args = TrainArgs()
    args.from_dict(vars(state['args']), skip_unsettable=True)
    loaded_state_dict = state['state_dict']

    if device is not None:
        args.device = device

    # Build model
    if template is not None:
        model = template
    else:
        model = MoleculeModel(args)
    model_state_dict = model.state_dict()

    # Skip missing parameters and parameters of mismatched size
    pretrained_state_dict = {}
    for param_name in loaded_state_dict.keys():

        if param_name not in model_state_dict:
            info(
                f'Warning: Pretrained parameter "{param_name}" cannot be found in model parameters.'
            )
        elif model_state_dict[param_name].shape != loaded_state_dict[
                param_name].shape:
            info(
                f'Warning: Pretrained parameter "{param_name}" '
                f'of shape {loaded_state_dict[param_name].shape} does not match corresponding '
                f'model parameter of shape {model_state_dict[param_name].shape}.'
            )
        else:
            #debug(f'Loading pretrained parameter "{param_name}".')
            pretrained_state_dict[param_name] = loaded_state_dict[param_name]

    # Load pretrained weights
    model_state_dict.update(pretrained_state_dict)
    model.load_state_dict(model_state_dict)

    if args.cuda:
        debug('Moving model to cuda')
    model = model.to(args.device)

    return model
コード例 #15
0
def run_meta_training(args: TrainArgs, logger: Logger = None) -> List[float]:
    """
    Trains a model and returns test scores on the model checkpoint with the highest validation score.

    :param args: Arguments.
    :param logger: Logger.
    :return: A list of ensemble scores for each task.
    """
    if logger is not None:
        debug, info = logger.debug, logger.info
    else:
        debug = info = print

    # Print command line
    debug('Command line')
    debug(f'python {" ".join(sys.argv)}')

    # Print args
    debug('Args')
    debug(args)

    # Save args
    args.save(os.path.join(args.save_dir, 'args.json'))

    # Set pytorch seed for random initial weights
    torch.manual_seed(args.pytorch_seed)

    # Get data
    debug('Loading data')
    args.task_names = args.target_columns or get_task_names(args.data_path)
    data = get_data(path=args.data_path, args=args, logger=logger)
    args.num_tasks = data.num_tasks()
    args.features_size = data.features_size()
    debug(f'Number of tasks = {args.num_tasks}')

    # Split data
    # debug(f'Splitting data with seed {args.seed}')
    # if args.separate_test_path:
    #     test_data = get_data(path=args.separate_test_path, args=args, features_path=args.separate_test_features_path, logger=logger)
    # if args.separate_val_path:
    #     val_data = get_data(path=args.separate_val_path, args=args, features_path=args.separate_val_features_path, logger=logger)

    # if args.separate_val_path and args.separate_test_path:
    #     train_data = data
    # elif args.separate_val_path:
    #     train_data, _, test_data = split_data(data=data, split_type=args.split_type, sizes=(0.8, 0.0, 0.2), seed=args.seed, args=args, logger=logger)
    # elif args.separate_test_path:
    #     train_data, val_data, _ = split_data(data=data, split_type=args.split_type, sizes=(0.8, 0.2, 0.0), seed=args.seed, args=args, logger=logger)
    # else:
    #     train_data, val_data, test_data = split_data(data=data, split_type=args.split_type, sizes=args.split_sizes, seed=args.seed, args=args, logger=logger)

    if args.dataset_type == 'classification':
        class_sizes = get_class_sizes(data)
        debug('Class sizes')
        for i, task_class_sizes in enumerate(class_sizes):
            debug(f'{args.task_names[i]} '
                  f'{", ".join(f"{cls}: {size * 100:.2f}%" for cls, size in enumerate(task_class_sizes))}')

    # if args.save_smiles_splits:
    #     save_smiles_splits(
    #         train_data=train_data,
    #         val_data=val_data,
    #         test_data=test_data,
    #         data_path=args.data_path,
    #         save_dir=args.save_dir
    #     )

    # If this happens, then need to move this logic into the task data loader
    # when it creates the datasets! 
    # if args.features_scaling:
    #     features_scaler = train_data.normalize_features(replace_nan_token=0)
    #     val_data.normalize_features(features_scaler)
    #     test_data.normalize_features(features_scaler)
    # else:
    #     features_scaler = None

    # args.train_data_size = len(train_data)
    
    # debug(f'Total size = {len(data):,} | '
    #       f'train size = {len(train_data):,} | val size = {len(val_data):,} | test size = {len(test_data):,}')

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    # if args.dataset_type == 'regression':
    #     debug('Fitting scaler')
    #     train_smiles, train_targets = train_data.smiles(), train_data.targets()
    #     scaler = StandardScaler().fit(train_targets)
    #     scaled_targets = scaler.transform(train_targets).tolist()
    #     train_data.set_targets(scaled_targets)
    # else:
    #     scaler = None

    # Get loss and metric functions
    loss_func = get_loss_func(args)
    metric_func = get_metric_func(metric=args.metric)

    # Set up test set evaluation
    # test_smiles, test_targets = test_data.smiles(), test_data.targets()
    # if args.dataset_type == 'multiclass':
    #     sum_test_preds = np.zeros((len(test_smiles), args.num_tasks, args.multiclass_num_classes))
    # else:
    #     sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    # Automatically determine whether to cache
    if len(data) <= args.cache_cutoff:
        cache = True
        num_workers = 0
    else:
        cache = False
        num_workers = args.num_workers

    # Set up MetaTaskDataLoaders, which takes care of task splits under the hood 
    # Set up task splits into T_tr, T_val, T_test

    assert args.chembl_assay_metadata_pickle_path is not None
    with open(args.chembl_assay_metadata_pickle_path +
            'chembl_128_assay_type_to_names.pickle', 'rb') as handle:
        chembl_128_assay_type_to_names = pickle.load(handle)
    with open(args.chembl_assay_metadata_pickle_path +
            'chembl_128_assay_name_to_type.pickle', 'rb') as handle:
        chembl_128_assay_name_to_type = pickle.load(handle)

    """ 
    Copy GSK implementation of task split 
    We have 5 Task types remaining
    ADME (A)
    Toxicity (T)
    Unassigned (U) 
    Binding (B)
    Functional (F)
    resulting in 902 tasks.

    For T_val, randomly select 10 B and F tasks
    For T_test, select another 10 B and F tasks and allocate all A, T, and U
    tasks to the test split.
    For T_train, allocate the remaining B and F tasks. 

    """
    import pdb; pdb.set_trace()
    T_val_num_BF_tasks = args.meta_split_sizes_BF[0]
    T_test_num_BF_tasks = args.meta_split_sizes_BF[1]
    T_val_idx = T_val_num_BF_tasks
    T_test_idx = T_val_num_BF_tasks + T_test_num_BF_tasks

    chembl_id_to_idx = {chembl_id: idx for idx, chembl_id in enumerate(args.task_names)}

    # Shuffle B and F tasks
    randomized_B_tasks = np.copy(chembl_128_assay_type_to_names['B'])
    np.random.shuffle(randomized_B_tasks)
    randomized_B_task_indices = [chembl_id_to_idx[assay] for assay in
            randomized_B_tasks]

    randomized_F_tasks = np.copy(chembl_128_assay_type_to_names['F'])
    np.random.shuffle(randomized_F_tasks)
    randomized_F_task_indices = [chembl_id_to_idx[assay] for assay in
            randomized_F_tasks]

    # Grab B and F indices for T_val
    T_val_B_task_indices = randomized_B_task_indices[:T_val_idx]
    T_val_F_task_indices = randomized_F_task_indices[:T_val_idx]

    # Grab B and F indices for T_test
    T_test_B_task_indices = randomized_B_task_indices[T_val_idx:T_test_idx]
    T_test_F_task_indices = randomized_F_task_indices[T_val_idx:T_test_idx]
    # Grab all A, T and U indices for T_test
    T_test_A_task_indices = [chembl_id_to_idx[assay] for assay in chembl_128_assay_type_to_names['A']]
    T_test_T_task_indices = [chembl_id_to_idx[assay] for assay in chembl_128_assay_type_to_names['T']]
    T_test_U_task_indices = [chembl_id_to_idx[assay] for assay in chembl_128_assay_type_to_names['U']]

    # Slot remaining BF tasks into T_tr
    T_tr_B_task_indices = randomized_B_task_indices[T_test_idx:]
    T_tr_F_task_indices = randomized_F_task_indices[T_test_idx:]

    T_tr = [0] * len(args.task_names)
    T_val = [0] * len(args.task_names)
    T_test = [0] * len(args.task_names)

    # Now make task bit vectors
    for idx_list in (T_tr_B_task_indices, T_tr_F_task_indices):
        for idx in idx_list:
            T_tr[idx] = 1

    for idx_list in (T_val_B_task_indices, T_val_F_task_indices):
        for idx in idx_list:
            T_val[idx] = 1

    for idx_list in (T_test_B_task_indices, T_test_F_task_indices, T_test_A_task_indices, T_test_T_task_indices, T_test_U_task_indices):
        for idx in idx_list:
            T_test[idx] = 1


    """
    Random task split for testing
    task_indices = list(range(len(args.task_names)))
    np.random.shuffle(task_indices)
    train_task_split, val_task_split, test_task_split = 0.9, 0, 0.1
    train_task_cutoff = int(len(task_indices) * train_task_split)
    train_task_idxs, test_task_idxs = [0] * len(task_indices), [0] * len(task_indices)
    for idx in task_indices[:train_task_cutoff]:
        train_task_idxs[idx] = 1
    for idx in task_indices[train_task_cutoff:]:
        test_task_idxs[idx] = 1
    """

    train_meta_task_data_loader = MetaTaskDataLoader(
            dataset=data,
            tasks=T_tr,
            sizes=args.meta_train_split_sizes,
            args=args,
            logger=logger)

    val_meta_task_data_loader = MetaTaskDataLoader(
            dataset=data,
            tasks=T_val,
            sizes=args.meta_test_split_sizes,
            args=args,
            logger=logger)

    test_meta_task_data_loader = MetaTaskDataLoader(
            dataset=data,
            tasks=T_test,
            sizes=args.meta_test_split_sizes,
            args=args,
            logger=logger)

    import pdb; pdb.set_trace()
    for meta_train_batch in train_meta_task_data_loader.tasks():
        for train_task in meta_train_batch:
            print('In inner loop')
            continue

    # Train ensemble of models
    for model_idx in range(args.ensemble_size):
        # Tensorboard writer
        save_dir = os.path.join(args.save_dir, f'model_{model_idx}')
        makedirs(save_dir)
        try:
            writer = SummaryWriter(log_dir=save_dir)
        except:
            writer = SummaryWriter(logdir=save_dir)

        # Load/build model
        if args.checkpoint_paths is not None:
            debug(f'Loading model {model_idx} from {args.checkpoint_paths[model_idx]}')
            model = load_checkpoint(args.checkpoint_paths[model_idx], logger=logger)
        else:
            debug(f'Building model {model_idx}')
            model = MoleculeModel(args)

        debug(model)
        debug(f'Number of parameters = {param_count(model):,}')
        if args.cuda:
            debug('Moving model to cuda')
        model = model.to(args.device)

        # Ensure that model is saved in correct location for evaluation if 0 epochs
        save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler, features_scaler, args)

        # Optimizers
        optimizer = build_optimizer(model, args)

        # Learning rate schedulers
        scheduler = build_lr_scheduler(optimizer, args)

        # Run training
        best_score = float('inf') if args.minimize_score else -float('inf')
        best_epoch, n_iter = 0, 0
        for epoch in trange(args.epochs):
            debug(f'Epoch {epoch}')

            n_iter = train(
                model=model,
                data_loader=train_data_loader,
                loss_func=loss_func,
                optimizer=optimizer,
                scheduler=scheduler,
                args=args,
                n_iter=n_iter,
                logger=logger,
                writer=writer
            )
            if isinstance(scheduler, ExponentialLR):
                scheduler.step()
            val_scores = evaluate(
                model=model,
                data_loader=val_data_loader,
                num_tasks=args.num_tasks,
                metric_func=metric_func,
                dataset_type=args.dataset_type,
                scaler=scaler,
                logger=logger
            )

            # Average validation score
            avg_val_score = np.nanmean(val_scores)
            debug(f'Validation {args.metric} = {avg_val_score:.6f}')
            writer.add_scalar(f'validation_{args.metric}', avg_val_score, n_iter)

            if args.show_individual_scores:
                # Individual validation scores
                for task_name, val_score in zip(args.task_names, val_scores):
                    debug(f'Validation {task_name} {args.metric} = {val_score:.6f}')
                    writer.add_scalar(f'validation_{task_name}_{args.metric}', val_score, n_iter)

            # Save model checkpoint if improved validation score
            if args.minimize_score and avg_val_score < best_score or \
                    not args.minimize_score and avg_val_score > best_score:
                best_score, best_epoch = avg_val_score, epoch
                save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler, features_scaler, args)        

        # Evaluate on test set using model with best validation score
        info(f'Model {model_idx} best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}')
        model = load_checkpoint(os.path.join(save_dir, 'model.pt'), device=args.device, logger=logger)
        
        test_preds = predict(
            model=model,
            data_loader=test_data_loader,
            scaler=scaler
        )
        test_scores = evaluate_predictions(
            preds=test_preds,
            targets=test_targets,
            num_tasks=args.num_tasks,
            metric_func=metric_func,
            dataset_type=args.dataset_type,
            logger=logger
        )

        if len(test_preds) != 0:
            sum_test_preds += np.array(test_preds)

        # Average test score
        avg_test_score = np.nanmean(test_scores)
        info(f'Model {model_idx} test {args.metric} = {avg_test_score:.6f}')
        writer.add_scalar(f'test_{args.metric}', avg_test_score, 0)

        if args.show_individual_scores:
            # Individual test scores
            for task_name, test_score in zip(args.task_names, test_scores):
                info(f'Model {model_idx} test {task_name} {args.metric} = {test_score:.6f}')
                writer.add_scalar(f'test_{task_name}_{args.metric}', test_score, n_iter)
        writer.close()

    # Evaluate ensemble on test set
    avg_test_preds = (sum_test_preds / args.ensemble_size).tolist()

    ensemble_scores = evaluate_predictions(
        preds=avg_test_preds,
        targets=test_targets,
        num_tasks=args.num_tasks,
        metric_func=metric_func,
        dataset_type=args.dataset_type,
        logger=logger
    )

    # Average ensemble score
    avg_ensemble_test_score = np.nanmean(ensemble_scores)
    info(f'Ensemble test {args.metric} = {avg_ensemble_test_score:.6f}')

    # Individual ensemble scores
    if args.show_individual_scores:
        for task_name, ensemble_score in zip(args.task_names, ensemble_scores):
            info(f'Ensemble test {task_name} {args.metric} = {ensemble_score:.6f}')

    return ensemble_scores
def pdts(args: TrainArgs, model_idx):
    """
    preliminary experiment with PDTS (approximate BO)
    we use a data set size of 50k and run until we have trained with 15k data points
    our batch size is 50
    we initialise with 1000 data points
    """

    ######## set up all logging ########
    logger = None

    # make save_dir
    save_dir = os.path.join(args.save_dir, f'model_{model_idx}')
    makedirs(save_dir)

    # make results_dir
    results_dir = args.results_dir
    makedirs(results_dir)

    # initialise wandb
    #os.environ['WANDB_MODE'] = 'dryrun'
    wandb.init(name=args.wandb_name + '_' + str(model_idx),
               project=args.wandb_proj,
               reinit=True)
    #print('WANDB directory is:')
    #print(wandb.run.dir)
    ####################################

    ########## get data
    args.task_names = args.target_columns or get_task_names(args.data_path)
    data = get_data(path=args.data_path, args=args, logger=logger)
    args.num_tasks = data.num_tasks()
    args.features_size = data.features_size()

    ########## SMILES of top 1%
    top1p = np.array(MoleculeDataset(data).targets())
    top1p_idx = np.argsort(-top1p[:, 0])[:int(args.max_data_size * 0.01)]
    SMILES = np.array(MoleculeDataset(data).smiles())[top1p_idx]

    ########## initial data splits
    args.seed = args.data_seeds[model_idx]
    data.shuffle(seed=args.seed)
    sizes = args.split_sizes
    train_size = int(sizes[0] * len(data))
    train_orig = data[:train_size]
    test_orig = data[train_size:]
    train_data, test_data = copy.deepcopy(
        MoleculeDataset(train_orig)), copy.deepcopy(MoleculeDataset(test_orig))
    args.train_data_size = len(train_data)

    ########## standardising
    # features (train and test)
    features_scaler = train_data.normalize_features(replace_nan_token=0)
    test_data.normalize_features(features_scaler)
    # targets (train)
    train_targets = train_data.targets()
    test_targets = test_data.targets()
    scaler = StandardScaler().fit(train_targets)
    scaled_targets = scaler.transform(train_targets).tolist()
    train_data.set_targets(scaled_targets)

    ########## loss, metric functions
    loss_func = neg_log_like
    metric_func = get_metric_func(metric=args.metric)

    ########## data loaders
    if len(data) <= args.cache_cutoff:
        cache = True
        num_workers = 0
    else:
        cache = False
        num_workers = args.num_workers
    train_data_loader = MoleculeDataLoader(dataset=train_data,
                                           batch_size=args.batch_size,
                                           num_workers=num_workers,
                                           cache=cache,
                                           class_balance=args.class_balance,
                                           shuffle=True,
                                           seed=args.seed)
    test_data_loader = MoleculeDataLoader(dataset=test_data,
                                          batch_size=args.batch_size,
                                          num_workers=num_workers,
                                          cache=cache)

    ########## instantiating model, optimiser, scheduler (MAP)
    # set pytorch seed for random initial weights
    torch.manual_seed(args.pytorch_seeds[model_idx])
    # build model
    print(f'Building model {model_idx}')
    model = MoleculeModel(args)
    print(model)
    print(f'Number of parameters = {param_count(model):,}')
    if args.cuda:
        print('Moving model to cuda')
    model = model.to(args.device)
    # optimizer
    optimizer = Adam([{
        'params': model.encoder.parameters()
    }, {
        'params': model.ffn.parameters()
    }, {
        'params': model.log_noise,
        'weight_decay': 0
    }],
                     lr=args.lr,
                     weight_decay=args.weight_decay)
    # learning rate scheduler
    scheduler = scheduler_const([args.lr])

    ####################################################################
    ####################################################################
    # FIRST THOMPSON ITERATION

    ### scores array
    ptds_scores = np.ones(args.pdts_batches + 1)
    batch_no = 0

    ### fill for batch 0
    SMILES_train = np.array(train_data.smiles())
    SMILES_stack = np.hstack((SMILES, SMILES_train))
    overlap = len(SMILES_stack) - len(np.unique(SMILES_stack))
    prop = overlap / len(SMILES)
    ptds_scores[batch_no] = prop
    wandb.log({
        "Proportion of top 1%": prop,
        "batch_no": batch_no
    },
              commit=False)

    ### train MAP posterior
    gp_switch = False
    likelihood = None
    bbp_switch = None
    n_iter = 0
    for epoch in range(args.epochs_init_map):
        n_iter = train(model=model,
                       data_loader=train_data_loader,
                       loss_func=loss_func,
                       optimizer=optimizer,
                       scheduler=scheduler,
                       args=args,
                       n_iter=n_iter,
                       bbp_switch=bbp_switch)
        # save to save_dir
        #if epoch == args.epochs_init_map - 1:
        #save_checkpoint(os.path.join(save_dir, f'model_{batch_no}.pt'), model, scaler, features_scaler, args)
    # if X load from checkpoint path
    if args.bbp or args.gp or args.swag or args.sgld:
        model = load_checkpoint(args.checkpoint_path +
                                f'/model_{model_idx}/model_{batch_no}.pt',
                                device=args.device,
                                logger=None)

    ########## BBP
    if args.bbp:
        model_bbp = MoleculeModelBBP(
            args)  # instantiate with bayesian linear layers
        for (_, param_bbp), (_, param_pre) in zip(model_bbp.named_parameters(),
                                                  model.named_parameters()):
            param_bbp.data = copy.deepcopy(
                param_pre.data.T)  # copy over parameters
        # instantiate rhos
        for layer in model_bbp.children():
            if isinstance(layer, BayesLinear):
                layer.init_rho(args.rho_min_bbp, args.rho_max_bbp)
        for layer in model_bbp.encoder.encoder.children():
            if isinstance(layer, BayesLinear):
                layer.init_rho(args.rho_min_bbp, args.rho_max_bbp)
        model = model_bbp  # name back
        # move to cuda
        if args.cuda:
            print('Moving bbp model to cuda')
            model = model.to(args.device)
        # optimiser and scheduler
        optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
        scheduler = scheduler_const([args.lr])

        bbp_switch = 2
        n_iter = 0
        for epoch in range(args.epochs_init):
            n_iter = train(model=model,
                           data_loader=train_data_loader,
                           loss_func=loss_func,
                           optimizer=optimizer,
                           scheduler=scheduler,
                           args=args,
                           n_iter=n_iter,
                           bbp_switch=bbp_switch)

    ########## GP
    if args.gp:
        # feature_extractor
        model.featurizer = True
        feature_extractor = model
        # inducing points
        inducing_points = initial_inducing_points(train_data_loader,
                                                  feature_extractor, args)
        # GP layer
        gp_layer = GPLayer(inducing_points, args.num_tasks)
        # full DKL model
        model = copy.deepcopy(DKLMoleculeModel(feature_extractor, gp_layer))
        # likelihood (rank 0 restricts to diagonal matrix)
        likelihood = gpytorch.likelihoods.MultitaskGaussianLikelihood(
            num_tasks=12, rank=0)
        # model and likelihood to CUDA
        if args.cuda:
            model.cuda()
            likelihood.cuda()
        # loss object
        loss_func = gpytorch.mlls.VariationalELBO(
            likelihood, model.gp_layer, num_data=args.train_data_size)
        # optimiser and scheduler
        params_list = [
            {
                'params': model.feature_extractor.parameters(),
                'weight_decay': args.weight_decay_gp
            },
            {
                'params': model.gp_layer.hyperparameters()
            },
            {
                'params': model.gp_layer.variational_parameters()
            },
            {
                'params': likelihood.parameters()
            },
        ]
        optimizer = torch.optim.Adam(params_list, lr=args.lr)
        scheduler = scheduler_const([args.lr])

        gp_switch = True
        n_iter = 0
        for epoch in range(args.epochs_init):
            n_iter = train(model=model,
                           data_loader=train_data_loader,
                           loss_func=loss_func,
                           optimizer=optimizer,
                           scheduler=scheduler,
                           args=args,
                           n_iter=n_iter,
                           gp_switch=gp_switch,
                           likelihood=likelihood)

    ########## SWAG
    if args.swag:
        model_core = copy.deepcopy(model)
        model = train_swag_pdts(model_core, train_data_loader, loss_func,
                                scaler, features_scaler, args, save_dir,
                                batch_no)

    ########## SGLD
    if args.sgld:
        model = train_sgld_pdts(model, train_data_loader, loss_func, scaler,
                                features_scaler, args, save_dir, batch_no)

    ### find top_idx
    top_idx = []  # need for thom
    sum_test_preds = np.zeros(
        (len(test_orig), args.num_tasks))  # need for greedy
    for sample in range(args.samples):

        # draw model from SWAG posterior
        if args.swag:
            model.sample(scale=1.0, cov=args.cov_mat, block=args.block)

        # retrieve sgld sample
        if args.sgld:
            model = load_checkpoint(
                args.save_dir +
                f'/model_{model_idx}/model_{batch_no}/model_{sample}.pt',
                device=args.device,
                logger=logger)

        test_preds = predict(model=model,
                             data_loader=test_data_loader,
                             args=args,
                             scaler=scaler,
                             test_data=True,
                             gp_sample=args.thompson,
                             bbp_sample=True)
        test_preds = np.array(test_preds)
        # thompson bit
        rank = 0

        # base length
        if args.sgld:
            base_length = 5 * sample + 4
        else:
            base_length = sample

        while args.thompson and (len(top_idx) <= base_length):
            top_unique_molecule = np.argsort(-test_preds[:, 0])[rank]
            rank += 1
            if top_unique_molecule not in top_idx:
                top_idx.append(top_unique_molecule)
        # add to sum_test_preds
        sum_test_preds += test_preds
        # print
        print('done sample ' + str(sample))
    # final top_idx
    if args.thompson:
        top_idx = np.array(top_idx)
    else:
        sum_test_preds /= args.samples
        top_idx = np.argsort(-sum_test_preds[:, 0])[:50]

    ### transfer from test to train
    top_idx = -np.sort(-top_idx)
    for idx in top_idx:
        train_orig.append(test_orig.pop(idx))
    train_data, test_data = copy.deepcopy(
        MoleculeDataset(train_orig)), copy.deepcopy(MoleculeDataset(test_orig))
    args.train_data_size = len(train_data)
    if args.gp:
        loss_func = gpytorch.mlls.VariationalELBO(
            likelihood, model.gp_layer, num_data=args.train_data_size)
    print(args.train_data_size)

    ### standardise features (train and test; using original features_scaler)
    train_data.normalize_features(features_scaler)
    test_data.normalize_features(features_scaler)

    ### standardise targets (train only; using original scaler)
    train_targets = train_data.targets()
    scaled_targets_tr = scaler.transform(train_targets).tolist()
    train_data.set_targets(scaled_targets_tr)

    ### create data loaders
    train_data_loader = MoleculeDataLoader(dataset=train_data,
                                           batch_size=args.batch_size,
                                           num_workers=num_workers,
                                           cache=cache,
                                           class_balance=args.class_balance,
                                           shuffle=True,
                                           seed=args.seed)
    test_data_loader = MoleculeDataLoader(dataset=test_data,
                                          batch_size=args.batch_size,
                                          num_workers=num_workers,
                                          cache=cache)

    ####################################################################
    ####################################################################

    ##################################
    ########## thompson sampling loop
    ##################################

    for batch_no in range(1, args.pdts_batches + 1):

        ### fill in ptds_scores
        SMILES_train = np.array(train_data.smiles())
        SMILES_stack = np.hstack((SMILES, SMILES_train))
        overlap = len(SMILES_stack) - len(np.unique(SMILES_stack))
        prop = overlap / len(SMILES)
        ptds_scores[batch_no] = prop
        wandb.log({
            "Proportion of top 1%": prop,
            "batch_no": batch_no
        },
                  commit=False)

        ### train posterior
        n_iter = 0
        for epoch in range(args.epochs):
            n_iter = train(model=model,
                           data_loader=train_data_loader,
                           loss_func=loss_func,
                           optimizer=optimizer,
                           scheduler=scheduler,
                           args=args,
                           n_iter=n_iter,
                           gp_switch=gp_switch,
                           likelihood=likelihood,
                           bbp_switch=bbp_switch)
            # save to save_dir
            #if epoch == args.epochs - 1:
            #save_checkpoint(os.path.join(save_dir, f'model_{batch_no}.pt'), model, scaler, features_scaler, args)
        # if swag, load checkpoint
        if args.swag:
            model_core = load_checkpoint(
                args.checkpoint_path +
                f'/model_{model_idx}/model_{batch_no}.pt',
                device=args.device,
                logger=None)

        ########## SWAG
        if args.swag:
            model = train_swag_pdts(model_core, train_data_loader, loss_func,
                                    scaler, features_scaler, args, save_dir,
                                    batch_no)

        ########## SGLD
        if args.sgld:
            model = train_sgld_pdts(model, train_data_loader, loss_func,
                                    scaler, features_scaler, args, save_dir,
                                    batch_no)

        ### find top_idx
        top_idx = []  # need for thom
        sum_test_preds = np.zeros(
            (len(test_orig), args.num_tasks))  # need for greedy
        for sample in range(args.samples):

            # draw model from SWAG posterior
            if args.swag:
                model.sample(scale=1.0, cov=args.cov_mat, block=args.block)

            # retrieve sgld sample
            if args.sgld:
                model = load_checkpoint(
                    args.save_dir +
                    f'/model_{model_idx}/model_{batch_no}/model_{sample}.pt',
                    device=args.device,
                    logger=logger)

            test_preds = predict(model=model,
                                 data_loader=test_data_loader,
                                 args=args,
                                 scaler=scaler,
                                 test_data=True,
                                 gp_sample=args.thompson,
                                 bbp_sample=True)
            test_preds = np.array(test_preds)
            # thompson bit
            rank = 0

            # base length
            if args.sgld:
                base_length = 5 * sample + 4
            else:
                base_length = sample

            while args.thompson and (len(top_idx) <= base_length):
                top_unique_molecule = np.argsort(-test_preds[:, 0])[rank]
                rank += 1
                if top_unique_molecule not in top_idx:
                    top_idx.append(top_unique_molecule)
            # add to sum_test_preds
            sum_test_preds += test_preds
            # print
            print('done sample ' + str(sample))
        # final top_idx
        if args.thompson:
            top_idx = np.array(top_idx)
        else:
            sum_test_preds /= args.samples
            top_idx = np.argsort(-sum_test_preds[:, 0])[:50]

        ### transfer from test to train
        top_idx = -np.sort(-top_idx)
        for idx in top_idx:
            train_orig.append(test_orig.pop(idx))
        train_data, test_data = copy.deepcopy(
            MoleculeDataset(train_orig)), copy.deepcopy(
                MoleculeDataset(test_orig))
        args.train_data_size = len(train_data)
        if args.gp:
            loss_func = gpytorch.mlls.VariationalELBO(
                likelihood, model.gp_layer, num_data=args.train_data_size)
        print(args.train_data_size)

        ### standardise features (train and test; using original features_scaler)
        train_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)

        ### standardise targets (train only; using original scaler)
        train_targets = train_data.targets()
        scaled_targets_tr = scaler.transform(train_targets).tolist()
        train_data.set_targets(scaled_targets_tr)

        ### create data loaders
        train_data_loader = MoleculeDataLoader(
            dataset=train_data,
            batch_size=args.batch_size,
            num_workers=num_workers,
            cache=cache,
            class_balance=args.class_balance,
            shuffle=True,
            seed=args.seed)
        test_data_loader = MoleculeDataLoader(dataset=test_data,
                                              batch_size=args.batch_size,
                                              num_workers=num_workers,
                                              cache=cache)

    # save scores
    np.savez(os.path.join(results_dir, f'ptds_{model_idx}'), ptds_scores)
コード例 #17
0
def new_noise(args: TrainArgs, logger: Logger = None) -> List[float]:
    """
    Trains a model and returns test scores on the model checkpoint with the highest validation score.

    :param args: Arguments.
    :param logger: Logger.
    :return: A list of ensemble scores for each task.
    """

    debug = info = print

    # Get data
    args.task_names = args.target_columns or get_task_names(args.data_path)
    data = get_data(path=args.data_path, args=args, logger=logger)
    args.num_tasks = data.num_tasks()
    args.features_size = data.features_size()

    # Split data
    debug(f'Splitting data with seed {args.seed}')
    train_data, val_data, test_data = split_data(data=data,
                                                 split_type=args.split_type,
                                                 sizes=args.split_sizes,
                                                 seed=args.seed,
                                                 args=args,
                                                 logger=logger)

    if args.features_scaling:
        features_scaler = train_data.normalize_features(replace_nan_token=0)
        val_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)
    else:
        features_scaler = None

    args.train_data_size = len(train_data)

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    if args.dataset_type == 'regression':
        debug('Fitting scaler')
        train_smiles, train_targets = train_data.smiles(), train_data.targets()
        scaler = StandardScaler().fit(train_targets)
        scaled_targets = scaler.transform(train_targets).tolist()
        train_data.set_targets(scaled_targets)
    else:
        scaler = None

    # Get loss and metric functions
    loss_func = neg_log_like
    metric_func = get_metric_func(metric=args.metric)

    # Set up test set evaluation
    test_smiles, test_targets = test_data.smiles(), test_data.targets()
    sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    # Automatically determine whether to cache
    if len(data) <= args.cache_cutoff:
        cache = True
        num_workers = 0
    else:
        cache = False
        num_workers = args.num_workers

    # Create data loaders
    train_data_loader = MoleculeDataLoader(dataset=train_data,
                                           batch_size=args.batch_size,
                                           num_workers=num_workers,
                                           cache=cache)
    val_data_loader = MoleculeDataLoader(dataset=val_data,
                                         batch_size=args.batch_size,
                                         num_workers=num_workers,
                                         cache=cache)
    test_data_loader = MoleculeDataLoader(dataset=test_data,
                                          batch_size=args.batch_size,
                                          num_workers=num_workers,
                                          cache=cache)

    ###########################################
    ########## Outer loop over ensemble members
    ###########################################

    for model_idx in range(args.ensemble_start_idx,
                           args.ensemble_start_idx + args.ensemble_size):

        # load the model
        if (args.method == 'map') or (args.method == 'swag') or (args.method
                                                                 == 'sgld'):
            model = load_checkpoint(args.checkpoint_path +
                                    f'/model_{model_idx}/model.pt',
                                    device=args.device,
                                    logger=logger)

        if args.method == 'gp':
            args.num_inducing_points = 1200
            fake_model = MoleculeModel(args)
            fake_model.featurizer = True
            feature_extractor = fake_model
            inducing_points = initial_inducing_points(train_data_loader,
                                                      feature_extractor, args)
            gp_layer = GPLayer(inducing_points, args.num_tasks)
            model = load_checkpoint(
                args.checkpoint_path + f'/model_{model_idx}/DKN_model.pt',
                device=args.device,
                logger=None,
                template=DKLMoleculeModel(MoleculeModel(args, featurizer=True),
                                          gp_layer))

        if args.method == 'dropR' or args.method == 'dropA':
            model = load_checkpoint(args.checkpoint_path +
                                    f'/model_{model_idx}/model.pt',
                                    device=args.device,
                                    logger=logger)

        if args.method == 'bbp':
            template = MoleculeModelBBP(args)
            for layer in template.children():
                if isinstance(layer, BayesLinear):
                    layer.init_rho(args.rho_min_bbp, args.rho_max_bbp)
            for layer in template.encoder.encoder.children():
                if isinstance(layer, BayesLinear):
                    layer.init_rho(args.rho_min_bbp, args.rho_max_bbp)
            model = load_checkpoint(args.checkpoint_path +
                                    f'/model_{model_idx}/model_bbp.pt',
                                    device=args.device,
                                    logger=None,
                                    template=template)

        if args.method == 'dun':
            args.prior_sig_dun = 0.05
            args.depth_min = 1
            args.depth_max = 5
            args.rho_min_dun = -5.5
            args.rho_max_dun = -5
            args.log_cat_init = 0
            template = MoleculeModelDUN(args)
            for layer in template.children():
                if isinstance(layer, BayesLinear):
                    layer.init_rho(args.rho_min_dun, args.rho_max_dun)
            for layer in template.encoder.encoder.children():
                if isinstance(layer, BayesLinear):
                    layer.init_rho(args.rho_min_dun, args.rho_max_dun)
            template.create_log_cat(args)
            model = load_checkpoint(args.checkpoint_path +
                                    f'/model_{model_idx}/model_dun.pt',
                                    device=args.device,
                                    logger=None,
                                    template=template)

        # make results_dir
        results_dir = os.path.join(args.results_dir, f'model_{model_idx}')
        makedirs(results_dir)

        # train_preds, train_targets
        train_preds = predict(model=model,
                              data_loader=train_data_loader,
                              args=args,
                              scaler=scaler,
                              test_data=False,
                              bbp_sample=False)
        train_preds = np.array(train_preds)
        train_targets = np.array(train_targets)

        # compute tstats
        tstats = np.ones((12, 3))
        for task in range(12):
            resid = train_preds[:, task] - train_targets[:, task]
            tstats[task] = np.array(stats.t.fit(resid, floc=0.0))

        ##################################
        ########## Inner loop over samples
        ##################################

        for sample_idx in range(args.samples):

            # save down
            np.savez(os.path.join(results_dir, f'tstats_{sample_idx}'), tstats)

            print('done one')
コード例 #18
0
ファイル: train.py プロジェクト: bp-kelley/chemprop
def train(model: MoleculeModel,
          data_loader: MoleculeDataLoader,
          loss_func: Callable,
          optimizer: Optimizer,
          scheduler: _LRScheduler,
          args: TrainArgs,
          n_iter: int = 0,
          logger: logging.Logger = None,
          writer: SummaryWriter = None) -> int:
    """
    Trains a model for an epoch.

    :param model: A :class:`~chemprop.models.model.MoleculeModel`.
    :param data_loader: A :class:`~chemprop.data.data.MoleculeDataLoader`.
    :param loss_func: Loss function.
    :param optimizer: An optimizer.
    :param scheduler: A learning rate scheduler.
    :param args: A :class:`~chemprop.args.TrainArgs` object containing arguments for training the model.
    :param n_iter: The number of iterations (training examples) trained on so far.
    :param logger: A logger for recording output.
    :param writer: A tensorboardX SummaryWriter.
    :return: The total number of iterations (training examples) trained on so far.
    """
    debug = logger.debug if logger is not None else print

    model.train()
    loss_sum = iter_count = 0

    for batch in tqdm(data_loader, total=len(data_loader), leave=False):
        # Prepare batch
        batch: MoleculeDataset
        mol_batch, features_batch, target_batch, mask_batch, atom_descriptors_batch, atom_features_batch, bond_features_batch, data_weights_batch = \
            batch.batch_graph(), batch.features(), batch.targets(), batch.mask(), batch.atom_descriptors(), \
            batch.atom_features(), batch.bond_features(), batch.data_weights()

        mask = torch.tensor(mask_batch, dtype=torch.bool) # shape(batch, tasks)
        targets = torch.tensor([[0 if x is None else x for x in tb] for tb in target_batch]) # shape(batch, tasks)

        if args.target_weights is not None:
            target_weights = torch.tensor(args.target_weights).unsqueeze(0) # shape(1,tasks)
        else:
            target_weights = torch.ones(targets.shape[1]).unsqueeze(0)
        data_weights = torch.tensor(data_weights_batch).unsqueeze(1) # shape(batch,1)

        if args.loss_function == 'bounded_mse':
            lt_target_batch = batch.lt_targets() # shape(batch, tasks)
            gt_target_batch = batch.gt_targets() # shape(batch, tasks)
            lt_target_batch = torch.tensor(lt_target_batch)
            gt_target_batch = torch.tensor(gt_target_batch)

        # Run model
        model.zero_grad()
        preds = model(mol_batch, features_batch, atom_descriptors_batch, atom_features_batch, bond_features_batch)

        # Move tensors to correct device
        torch_device = preds.device
        mask = mask.to(torch_device)
        targets = targets.to(torch_device)
        target_weights = target_weights.to(torch_device)
        data_weights = data_weights.to(torch_device)
        if args.loss_function == 'bounded_mse':
            lt_target_batch = lt_target_batch.to(torch_device)
            gt_target_batch = gt_target_batch.to(torch_device)

        # Calculate losses
        if args.loss_function == 'mcc' and args.dataset_type == 'classification':
            loss = loss_func(preds, targets, data_weights, mask) *target_weights.squeeze(0)
        elif args.loss_function == 'mcc': # multiclass dataset type
            targets = targets.long()
            target_losses = []
            for target_index in range(preds.size(1)):
                target_loss = loss_func(preds[:, target_index, :], targets[:, target_index], data_weights, mask[:, target_index]).unsqueeze(0)
                target_losses.append(target_loss)
            loss = torch.cat(target_losses).to(torch_device) * target_weights.squeeze(0)
        elif args.dataset_type == 'multiclass':
            targets = targets.long()
            if args.loss_function == 'dirichlet':
                loss = loss_func(preds, targets, args.evidential_regularization) * target_weights * data_weights * mask
            else:
                target_losses = []
                for target_index in range(preds.size(1)):
                    target_loss = loss_func(preds[:, target_index, :], targets[:, target_index]).unsqueeze(1)
                    target_losses.append(target_loss)
                loss = torch.cat(target_losses, dim=1).to(torch_device) * target_weights * data_weights * mask
        elif args.dataset_type == 'spectra':
            loss = loss_func(preds, targets, mask) * target_weights * data_weights * mask
        elif args.loss_function == 'bounded_mse':
            loss = loss_func(preds, targets, lt_target_batch, gt_target_batch) * target_weights * data_weights * mask
        elif args.loss_function == 'evidential':
            loss = loss_func(preds, targets, args.evidential_regularization) * target_weights * data_weights * mask
        elif args.loss_function == 'dirichlet': # classification
            loss = loss_func(preds, targets, args.evidential_regularization) * target_weights * data_weights * mask
        else:
            loss = loss_func(preds, targets) * target_weights * data_weights * mask
        loss = loss.sum() / mask.sum()

        loss_sum += loss.item()
        iter_count += 1

        loss.backward()
        if args.grad_clip:
            nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
        optimizer.step()

        if isinstance(scheduler, NoamLR):
            scheduler.step()

        n_iter += len(batch)

        # Log and/or add to tensorboard
        if (n_iter // args.batch_size) % args.log_frequency == 0:
            lrs = scheduler.get_lr()
            pnorm = compute_pnorm(model)
            gnorm = compute_gnorm(model)
            loss_avg = loss_sum / iter_count
            loss_sum = iter_count = 0

            lrs_str = ', '.join(f'lr_{i} = {lr:.4e}' for i, lr in enumerate(lrs))
            debug(f'Loss = {loss_avg:.4e}, PNorm = {pnorm:.4f}, GNorm = {gnorm:.4f}, {lrs_str}')

            if writer is not None:
                writer.add_scalar('train_loss', loss_avg, n_iter)
                writer.add_scalar('param_norm', pnorm, n_iter)
                writer.add_scalar('gradient_norm', gnorm, n_iter)
                for i, lr in enumerate(lrs):
                    writer.add_scalar(f'learning_rate_{i}', lr, n_iter)

    return n_iter
コード例 #19
0
ファイル: train.py プロジェクト: jasonzdeng/chemprop
def train(model: MoleculeModel,
          data_loader: MoleculeDataLoader,
          loss_func: Callable,
          optimizer: Optimizer,
          scheduler: _LRScheduler,
          args: TrainArgs,
          n_iter: int = 0,
          logger: logging.Logger = None,
          writer: SummaryWriter = None) -> int:
    """
    Trains a model for an epoch.

    :param model: A :class:`~chemprop.models.model.MoleculeModel`.
    :param data_loader: A :class:`~chemprop.data.data.MoleculeDataLoader`.
    :param loss_func: Loss function.
    :param optimizer: An optimizer.
    :param scheduler: A learning rate scheduler.
    :param args: A :class:`~chemprop.args.TrainArgs` object containing arguments for training the model.
    :param n_iter: The number of iterations (training examples) trained on so far.
    :param logger: A logger for recording output.
    :param writer: A tensorboardX SummaryWriter.
    :return: The total number of iterations (training examples) trained on so far.
    """
    debug = logger.debug if logger is not None else print

    model.train()
    loss_sum, iter_count = 0, 0

    for batch in tqdm(data_loader, total=len(data_loader)):
        # Prepare batch
        batch: MoleculeDataset
        mol_batch, features_batch, target_batch = batch.batch_graph(
        ), batch.features(), batch.targets()
        mask = torch.Tensor([[x is not None for x in tb]
                             for tb in target_batch])
        targets = torch.Tensor([[0 if x is None else x for x in tb]
                                for tb in target_batch])

        # Run model
        model.zero_grad()
        preds = model(mol_batch, features_batch)

        # Move tensors to correct device
        mask = mask.to(preds.device)
        targets = targets.to(preds.device)
        class_weights = torch.ones(targets.shape, device=preds.device)

        if args.dataset_type == 'multiclass':
            targets = targets.long()
            loss = torch.cat([
                loss_func(preds[:, target_index, :],
                          targets[:, target_index]).unsqueeze(1)
                for target_index in range(preds.size(1))
            ],
                             dim=1) * class_weights * mask
        else:
            loss = loss_func(preds, targets) * class_weights * mask
        loss = loss.sum() / mask.sum()

        loss_sum += loss.item()
        iter_count += len(batch)

        loss.backward()
        if args.grad_clip:
            nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
        optimizer.step()

        if isinstance(scheduler, NoamLR):
            scheduler.step()

        n_iter += len(batch)

        # Log and/or add to tensorboard
        if (n_iter // args.batch_size) % args.log_frequency == 0:
            lrs = scheduler.get_lr()
            pnorm = compute_pnorm(model)
            gnorm = compute_gnorm(model)
            loss_avg = loss_sum / iter_count
            loss_sum, iter_count = 0, 0

            lrs_str = ', '.join(f'lr_{i} = {lr:.4e}'
                                for i, lr in enumerate(lrs))
            debug(
                f'Loss = {loss_avg:.4e}, PNorm = {pnorm:.4f}, GNorm = {gnorm:.4f}, {lrs_str}'
            )

            if writer is not None:
                writer.add_scalar('train_loss', loss_avg, n_iter)
                writer.add_scalar('param_norm', pnorm, n_iter)
                writer.add_scalar('gradient_norm', gnorm, n_iter)
                for i, lr in enumerate(lrs):
                    writer.add_scalar(f'learning_rate_{i}', lr, n_iter)

    return n_iter
コード例 #20
0
def run_training(args: TrainArgs, logger: Logger = None) -> List[float]:
    """
    Trains a model and returns test scores on the model checkpoint with the highest validation score.

    :param args: Arguments.
    :param logger: Logger.
    :return: A list of ensemble scores for each task.
    """

    debug = info = print

    # Print command line and args
    debug('Command line')
    debug(f'python {" ".join(sys.argv)}')
    debug('Args')
    debug(args)

    # Save args
    args.save(os.path.join(args.save_dir, 'args.json'))

    # Get data
    debug('Loading data')
    args.task_names = args.target_columns or get_task_names(args.data_path)
    data = get_data(path=args.data_path, args=args, logger=logger)
    args.num_tasks = data.num_tasks()
    args.features_size = data.features_size()
    debug(f'Number of tasks = {args.num_tasks}')

    # Split data
    debug(f'Splitting data with seed {args.seed}')
    train_data, val_data, test_data = split_data(data=data,
                                                 split_type=args.split_type,
                                                 sizes=args.split_sizes,
                                                 seed=args.seed,
                                                 args=args,
                                                 logger=logger)

    if args.features_scaling:
        features_scaler = train_data.normalize_features(replace_nan_token=0)
        val_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)
    else:
        features_scaler = None

    args.train_data_size = len(train_data)

    debug(
        f'Total size = {len(data):,} | '
        f'train size = {len(train_data):,} | val size = {len(val_data):,} | test size = {len(test_data):,}'
    )

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    if args.dataset_type == 'regression':
        debug('Fitting scaler')
        train_smiles, train_targets = train_data.smiles(), train_data.targets()
        scaler = StandardScaler().fit(train_targets)
        scaled_targets = scaler.transform(train_targets).tolist()
        train_data.set_targets(scaled_targets)
    else:
        scaler = None

    # Get loss and metric functions
    loss_func = neg_log_like
    metric_func = get_metric_func(metric=args.metric)

    # Set up test set evaluation
    test_smiles, test_targets = test_data.smiles(), test_data.targets()
    sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    # Automatically determine whether to cache
    if len(data) <= args.cache_cutoff:
        cache = True
        num_workers = 0
    else:
        cache = False
        num_workers = args.num_workers

    # Create data loaders
    train_data_loader = MoleculeDataLoader(dataset=train_data,
                                           batch_size=args.batch_size,
                                           num_workers=num_workers,
                                           cache=cache,
                                           class_balance=args.class_balance,
                                           shuffle=True,
                                           seed=args.seed)
    val_data_loader = MoleculeDataLoader(dataset=val_data,
                                         batch_size=args.batch_size,
                                         num_workers=num_workers,
                                         cache=cache)
    test_data_loader = MoleculeDataLoader(dataset=test_data,
                                          batch_size=args.batch_size,
                                          num_workers=num_workers,
                                          cache=cache)

    ###########################################
    ########## Outer loop over ensemble members
    ###########################################

    for model_idx in range(args.ensemble_start_idx,
                           args.ensemble_start_idx + args.ensemble_size):

        # Set pytorch seed for random initial weights
        torch.manual_seed(args.pytorch_seeds[model_idx])

        ######## set up all logging ########
        # make save_dir
        save_dir = os.path.join(args.save_dir, f'model_{model_idx}')
        makedirs(save_dir)

        # make results_dir
        results_dir = os.path.join(args.results_dir, f'model_{model_idx}')
        makedirs(results_dir)

        # initialise wandb
        os.environ['WANDB_MODE'] = 'dryrun'
        wandb.init(name=args.wandb_name + '_' + str(model_idx),
                   project=args.wandb_proj,
                   reinit=True)
        print('WANDB directory is:')
        print(wandb.run.dir)
        ####################################

        # Load/build model
        if args.checkpoint_path is not None:
            debug(f'Loading model {model_idx} from {args.checkpoint_path}')
            model = load_checkpoint(args.checkpoint_path +
                                    f'/model_{model_idx}/model.pt',
                                    device=args.device,
                                    logger=logger)
        else:
            debug(f'Building model {model_idx}')
            model = MoleculeModel(args)

        debug(model)
        debug(f'Number of parameters = {param_count(model):,}')
        if args.cuda:
            debug('Moving model to cuda')
        model = model.to(args.device)

        # Ensure that model is saved in correct location for evaluation if 0 epochs
        save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler,
                        features_scaler, args)

        # Optimizer
        optimizer = Adam([{
            'params': model.encoder.parameters()
        }, {
            'params': model.ffn.parameters()
        }, {
            'params': model.log_noise,
            'weight_decay': 0
        }],
                         lr=args.init_lr,
                         weight_decay=args.weight_decay)

        # Learning rate scheduler
        scheduler = build_lr_scheduler(optimizer, args)

        # Run training
        best_score = float('inf') if args.minimize_score else -float('inf')
        best_epoch, n_iter = 0, 0
        for epoch in range(args.epochs):
            debug(f'Epoch {epoch}')

            n_iter = train(model=model,
                           data_loader=train_data_loader,
                           loss_func=loss_func,
                           optimizer=optimizer,
                           scheduler=scheduler,
                           args=args,
                           n_iter=n_iter,
                           logger=logger)
            val_scores = evaluate(model=model,
                                  data_loader=val_data_loader,
                                  args=args,
                                  num_tasks=args.num_tasks,
                                  metric_func=metric_func,
                                  dataset_type=args.dataset_type,
                                  scaler=scaler,
                                  logger=logger)

            # Average validation score
            avg_val_score = np.nanmean(val_scores)
            debug(f'Validation {args.metric} = {avg_val_score:.6f}')
            wandb.log({"Validation MAE": avg_val_score})

            # Save model checkpoint if improved validation score
            if args.minimize_score and avg_val_score < best_score or \
                    not args.minimize_score and avg_val_score > best_score:
                best_score, best_epoch = avg_val_score, epoch
                save_checkpoint(os.path.join(save_dir, 'model.pt'), model,
                                scaler, features_scaler, args)

            if epoch == args.noam_epochs - 1:
                optimizer = Adam([{
                    'params': model.encoder.parameters()
                }, {
                    'params': model.ffn.parameters()
                }, {
                    'params': model.log_noise,
                    'weight_decay': 0
                }],
                                 lr=args.final_lr,
                                 weight_decay=args.weight_decay)

                scheduler = scheduler_const([args.final_lr])

        # load model with best validation score
        info(
            f'Model {model_idx} best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}'
        )
        model = load_checkpoint(os.path.join(save_dir, 'model.pt'),
                                device=args.device,
                                logger=logger)

        # SWAG training loop, returns swag_model
        if args.swag:
            model = train_swag(model, train_data, val_data, num_workers, cache,
                               loss_func, metric_func, scaler, features_scaler,
                               args, save_dir)

        # SGLD loop, which saves nets
        if args.sgld:
            model = train_sgld(model, train_data, val_data, num_workers, cache,
                               loss_func, metric_func, scaler, features_scaler,
                               args, save_dir)

        # GP loop
        if args.gp:
            model, likelihood = train_gp(model, train_data, val_data,
                                         num_workers, cache, metric_func,
                                         scaler, features_scaler, args,
                                         save_dir)

        # BBP
        if args.bbp:
            model = train_bbp(model, train_data, val_data, num_workers, cache,
                              loss_func, metric_func, scaler, features_scaler,
                              args, save_dir)

        # DUN
        if args.dun:
            model = train_dun(model, train_data, val_data, num_workers, cache,
                              loss_func, metric_func, scaler, features_scaler,
                              args, save_dir)

        ##################################
        ########## Inner loop over samples
        ##################################

        for sample_idx in range(args.samples):

            # draw model from SWAG posterior
            if args.swag:
                model.sample(scale=1.0, cov=args.cov_mat, block=args.block)

            # draw model from collected SGLD models
            if args.sgld:
                model = load_checkpoint(os.path.join(save_dir,
                                                     f'model_{sample_idx}.pt'),
                                        device=args.device,
                                        logger=logger)

            # make predictions
            test_preds = predict(model=model,
                                 data_loader=test_data_loader,
                                 args=args,
                                 scaler=scaler,
                                 test_data=True,
                                 bbp_sample=True)

            #######################################################################
            #######################################################################
            #####        SAVING STUFF DOWN

            if args.gp:

                # get test_preds_std (scaled back to original data)
                test_preds_std = predict_std_gp(model=model,
                                                data_loader=test_data_loader,
                                                args=args,
                                                scaler=scaler,
                                                likelihood=likelihood)

                # 1 - MEANS
                np.savez(os.path.join(results_dir, f'preds_{sample_idx}'),
                         np.array(test_preds))

                # 2 - STD, combined aleatoric and epistemic (we save down the stds, always)
                np.savez(os.path.join(results_dir, f'predsSTDEV_{sample_idx}'),
                         np.array(test_preds_std))

            else:

                # save test_preds and aleatoric uncertainties
                if args.dun:
                    log_cat = model.log_cat.detach().cpu().numpy()
                    cat = np.exp(log_cat) / np.sum(np.exp(log_cat))
                    np.savez(os.path.join(results_dir, f'cat_{sample_idx}'),
                             cat)

                    # samples from categorical dist and saves a depth MC sample
                    depth_sample = np.random.multinomial(1,
                                                         cat).nonzero()[0][0]
                    test_preds_MCdepth = predict_MCdepth(
                        model=model,
                        data_loader=test_data_loader,
                        args=args,
                        scaler=scaler,
                        d=depth_sample)
                    np.savez(
                        os.path.join(results_dir,
                                     f'predsMCDEPTH_{sample_idx}'),
                        np.array(test_preds_MCdepth))

                if args.swag:
                    log_noise = model.base.log_noise
                else:
                    log_noise = model.log_noise
                noise = np.exp(log_noise.detach().cpu().numpy()) * np.array(
                    scaler.stds)
                np.savez(os.path.join(results_dir, f'preds_{sample_idx}'),
                         np.array(test_preds))
                np.savez(os.path.join(results_dir, f'noise_{sample_idx}'),
                         noise)

            #######################################################################
            #######################################################################

            # add predictions to sum_test_preds
            if len(test_preds) != 0:
                sum_test_preds += np.array(test_preds)

            # evaluate predictions using metric function
            test_scores = evaluate_predictions(preds=test_preds,
                                               targets=test_targets,
                                               num_tasks=args.num_tasks,
                                               metric_func=metric_func,
                                               dataset_type=args.dataset_type,
                                               logger=logger)

            # compute average test score
            avg_test_score = np.nanmean(test_scores)
            info(
                f'Model {model_idx}, sample {sample_idx} test {args.metric} = {avg_test_score:.6f}'
            )

    #################################
    ########## Bayesian Model Average
    #################################
    # note: this is an average over Bayesian samples AND components in an ensemble

    # compute number of prediction iterations
    pred_iterations = args.ensemble_size * args.samples

    # average predictions across iterations
    avg_test_preds = (sum_test_preds / pred_iterations).tolist()

    # evaluate
    BMA_scores = evaluate_predictions(preds=avg_test_preds,
                                      targets=test_targets,
                                      num_tasks=args.num_tasks,
                                      metric_func=metric_func,
                                      dataset_type=args.dataset_type,
                                      logger=logger)

    # average scores across tasks
    avg_BMA_test_score = np.nanmean(BMA_scores)
    info(f'BMA test {args.metric} = {avg_BMA_test_score:.6f}')

    return BMA_scores
コード例 #21
0
def run_training_gnn_xgb(args: TrainArgs,
                         logger: Logger = None) -> List[float]:
    """
    Trains a model and returns test scores on the model checkpoint with the highest validation score.

    :param args: Arguments.
    :param logger: Logger.
    :return: A list of ensemble scores for each task.
    """
    if logger is not None:
        debug, info = logger.debug, logger.info
    else:
        debug = info = print

    # Print command line
    debug('Command line')
    debug(f'python {" ".join(sys.argv)}')

    # Print args
    debug('Args')
    debug(args)

    # Save args
    args.save(os.path.join(args.save_dir, 'args.json'))

    # Set pytorch seed for random initial weights
    torch.manual_seed(args.pytorch_seed)

    # Get data
    debug('Loading data')
    args.task_names = args.target_columns or get_task_names(args.data_path)
    data = get_data(path=args.data_path, args=args, logger=logger)
    args.num_tasks = data.num_tasks()
    args.features_size = data.features_size()
    debug(f'Number of tasks = {args.num_tasks}')

    # Split data
    debug(f'Splitting data with seed {args.seed}')
    if args.separate_test_path:
        test_data = get_data(path=args.separate_test_path,
                             args=args,
                             features_path=args.separate_test_features_path,
                             logger=logger)
    if args.separate_val_path:
        val_data = get_data(path=args.separate_val_path,
                            args=args,
                            features_path=args.separate_val_features_path,
                            logger=logger)

    if args.separate_val_path and args.separate_test_path:
        train_data = data
    elif args.separate_val_path:
        train_data, _, test_data = split_data(data=data,
                                              split_type=args.split_type,
                                              sizes=(0.8, 0.0, 0.2),
                                              seed=args.seed,
                                              args=args,
                                              logger=logger)
    elif args.separate_test_path:
        train_data, val_data, _ = split_data(data=data,
                                             split_type=args.split_type,
                                             sizes=(0.8, 0.2, 0.0),
                                             seed=args.seed,
                                             args=args,
                                             logger=logger)
    else:
        train_data, val_data, test_data = split_data(
            data=data,
            split_type=args.split_type,
            sizes=args.split_sizes,
            seed=args.seed,
            args=args,
            logger=logger)

    if args.dataset_type == 'classification':
        class_sizes = get_class_sizes(data)
        debug('Class sizes')
        for i, task_class_sizes in enumerate(class_sizes):
            debug(
                f'{args.task_names[i]} '
                f'{", ".join(f"{cls}: {size * 100:.2f}%" for cls, size in enumerate(task_class_sizes))}'
            )

    if args.save_smiles_splits:
        save_smiles_splits(train_data=train_data,
                           val_data=val_data,
                           test_data=test_data,
                           data_path=args.data_path,
                           save_dir=args.save_dir)

    if args.features_scaling:
        features_scaler = train_data.normalize_features(replace_nan_token=0)
        val_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)
    else:
        features_scaler = None

    args.train_data_size = len(train_data)

    debug(
        f'Total size = {len(data):,} | '
        f'train size = {len(train_data):,} | val size = {len(val_data):,} | test size = {len(test_data):,}'
    )

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    if args.dataset_type == 'regression':
        debug('Fitting scaler')
        train_smiles, train_targets = train_data.smiles(), train_data.targets()
        scaler = StandardScaler().fit(train_targets)
        scaled_targets = scaler.transform(train_targets).tolist()
        train_data.set_targets(scaled_targets)
    else:
        scaler = None

    # Get loss and metric functions
    loss_func = get_loss_func(args)
    metric_func = get_metric_func(metric=args.metric)

    # Set up test set evaluation
    val_smiles, val_targets = val_data.smiles(), val_data.targets()
    test_smiles, test_targets = test_data.smiles(), test_data.targets()
    if args.dataset_type == 'multiclass':
        sum_test_preds = np.zeros(
            (len(test_smiles), args.num_tasks, args.multiclass_num_classes))
    else:
        sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    # Automatically determine whether to cache
    if len(data) <= args.cache_cutoff:
        cache = True
        num_workers = 0
    else:
        cache = False
        num_workers = args.num_workers

    # Create data loaders
    train_data_loader = MoleculeDataLoader(dataset=train_data,
                                           batch_size=args.batch_size,
                                           num_workers=num_workers,
                                           cache=cache,
                                           class_balance=args.class_balance,
                                           shuffle=True,
                                           seed=args.seed)
    val_data_loader = MoleculeDataLoader(dataset=val_data,
                                         batch_size=args.batch_size,
                                         num_workers=num_workers,
                                         cache=cache)
    test_data_loader = MoleculeDataLoader(dataset=test_data,
                                          batch_size=args.batch_size,
                                          num_workers=num_workers,
                                          cache=cache)

    # Train ensemble of models
    for model_idx in range(args.ensemble_size):
        # Tensorboard writer
        save_dir = os.path.join(args.save_dir, f'model_{model_idx}')
        makedirs(save_dir)
        try:
            writer = SummaryWriter(log_dir=save_dir)
        except:
            writer = SummaryWriter(logdir=save_dir)

        # Load/build model
        if args.checkpoint_paths is not None:
            debug(
                f'Loading model {model_idx} from {args.checkpoint_paths[model_idx]}'
            )
            model = load_checkpoint(args.checkpoint_paths[model_idx],
                                    logger=logger)
        else:
            debug(f'Building model {model_idx}')
            model = MoleculeModel(args)

        debug(model)
        debug(f'Number of parameters = {param_count(model):,}')
        if args.cuda:
            debug('Moving model to cuda')
        model = model.to(args.device)

        # Ensure that model is saved in correct location for evaluation if 0 epochs
        save_checkpoint(os.path.join(save_dir, 'model.pt'), model, scaler,
                        features_scaler, args)

        # Optimizers
        optimizer = build_optimizer(model, args)

        # Learning rate schedulers
        scheduler = build_lr_scheduler(optimizer, args)

        # Run training
        best_score = float('inf') if args.minimize_score else -float('inf')
        best_epoch, n_iter = 0, 0
        for epoch in trange(args.epochs):
            debug(f'Epoch {epoch}')

            n_iter = train(model=model,
                           data_loader=train_data_loader,
                           loss_func=loss_func,
                           optimizer=optimizer,
                           scheduler=scheduler,
                           args=args,
                           n_iter=n_iter,
                           logger=logger,
                           writer=writer)
            if isinstance(scheduler, ExponentialLR):
                scheduler.step()
            val_scores = evaluate(model=model,
                                  data_loader=val_data_loader,
                                  num_tasks=args.num_tasks,
                                  metric_func=metric_func,
                                  dataset_type=args.dataset_type,
                                  scaler=scaler,
                                  logger=logger)

            # Average validation score
            avg_val_score = np.nanmean(val_scores)
            debug(f'Validation {args.metric} = {avg_val_score:.6f}')
            writer.add_scalar(f'validation_{args.metric}', avg_val_score,
                              n_iter)

            if args.show_individual_scores:
                # Individual validation scores
                for task_name, val_score in zip(args.task_names, val_scores):
                    debug(
                        f'Validation {task_name} {args.metric} = {val_score:.6f}'
                    )
                    writer.add_scalar(f'validation_{task_name}_{args.metric}',
                                      val_score, n_iter)

            # Save model checkpoint if improved validation score
            if args.minimize_score and avg_val_score < best_score or \
                    not args.minimize_score and avg_val_score > best_score:
                best_score, best_epoch = avg_val_score, epoch
                save_checkpoint(os.path.join(save_dir, 'model.pt'), model,
                                scaler, features_scaler, args)

                # Evaluate on test set using model with best validation score
        info(
            f'Model {model_idx} best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}'
        )
        model = load_checkpoint(os.path.join(save_dir, 'model.pt'),
                                device=args.device,
                                logger=logger)

        test_preds, _ = predict(model=model,
                                data_loader=test_data_loader,
                                scaler=scaler)
        test_scores = evaluate_predictions(preds=test_preds,
                                           targets=test_targets,
                                           num_tasks=args.num_tasks,
                                           metric_func=metric_func,
                                           dataset_type=args.dataset_type,
                                           logger=logger)

        if len(test_preds) != 0:
            sum_test_preds += np.array(test_preds)

        # Average test score
        avg_test_score = np.nanmean(test_scores)
        info(f'Model {model_idx} test {args.metric} = {avg_test_score:.6f}')
        writer.add_scalar(f'test_{args.metric}', avg_test_score, 0)

        if args.show_individual_scores:
            # Individual test scores
            for task_name, test_score in zip(args.task_names, test_scores):
                info(
                    f'Model {model_idx} test {task_name} {args.metric} = {test_score:.6f}'
                )
                writer.add_scalar(f'test_{task_name}_{args.metric}',
                                  test_score, n_iter)
        writer.close()

    # Evaluate ensemble on test set
    avg_test_preds = (sum_test_preds / args.ensemble_size).tolist()

    ensemble_scores = evaluate_predictions(preds=avg_test_preds,
                                           targets=test_targets,
                                           num_tasks=args.num_tasks,
                                           metric_func=metric_func,
                                           dataset_type=args.dataset_type,
                                           logger=logger)

    # Average ensemble score
    avg_ensemble_test_score = np.nanmean(ensemble_scores)
    info(f'Ensemble test {args.metric} = {avg_ensemble_test_score:.6f}')

    # Individual ensemble scores
    if args.show_individual_scores:
        for task_name, ensemble_score in zip(args.task_names, ensemble_scores):
            info(
                f'Ensemble test {task_name} {args.metric} = {ensemble_score:.6f}'
            )

    _, train_feature = predict(model=model,
                               data_loader=train_data_loader,
                               scaler=scaler)
    _, val_feature = predict(model=model,
                             data_loader=val_data_loader,
                             scaler=scaler)
    _, test_feature = predict(model=model,
                              data_loader=test_data_loader,
                              scaler=scaler)

    return ensemble_scores, train_feature, val_feature, test_feature, train_targets, val_targets, test_targets
コード例 #22
0
def run_training(args: TrainArgs,
                 data: MoleculeDataset,
                 logger: Logger = None) -> Dict[str, List[float]]:
    """
    Loads data, trains a Chemprop model, and returns test scores for the model checkpoint with the highest validation score.

    :param args: A :class:`~chemprop.args.TrainArgs` object containing arguments for
                 loading data and training the Chemprop model.
    :param data: A :class:`~chemprop.data.MoleculeDataset` containing the data.
    :param logger: A logger to record output.
    :return: A dictionary mapping each metric in :code:`args.metrics` to a list of values for each task.

    """
    if logger is not None:
        debug, info = logger.debug, logger.info
    else:
        debug = info = print

    # Set pytorch seed for random initial weights
    torch.manual_seed(args.pytorch_seed)

    # Split data
    debug(f"Splitting data with seed {args.seed}")
    # if args.separate_test_path:
    #    test_data = get_data(
    #        path=args.separate_test_path,
    #        args=args,
    #        features_path=args.separate_test_features_path,
    #        atom_descriptors_path=args.separate_test_atom_descriptors_path,
    #        bond_features_path=args.separate_test_bond_features_path,
    #        smiles_columns=args.smiles_columns,
    #        logger=logger,
    #    )
    # if args.separate_val_path:
    #    val_data = get_data(
    #        path=args.separate_val_path,
    #        args=args,
    #        features_path=args.separate_val_features_path,
    #        atom_descriptors_path=args.separate_val_atom_descriptors_path,
    #        bond_features_path=args.separate_val_bond_features_path,
    #        smiles_columns=args.smiles_columns,
    #        logger=logger,
    #    )

    # if args.separate_val_path and args.separate_test_path:
    #    train_data = data
    # elif args.separate_val_path:
    #    train_data, _, test_data = split_data(
    #        data=data,
    #        split_type=args.split_type,
    #        sizes=(0.8, 0.0, 0.2),
    #        seed=args.seed,
    #        num_folds=args.num_folds,
    #        args=args,
    #        logger=logger,
    #    )
    # elif args.separate_test_path:
    #    train_data, val_data, _ = split_data(
    #        data=data,
    #        split_type=args.split_type,
    #        sizes=(0.8, 0.2, 0.0),
    #        seed=args.seed,
    #        num_folds=args.num_folds,
    #        args=args,
    #        logger=logger,
    #    )
    # else:  # Default
    train_data, val_data, test_data = split_data(
        data=data,
        split_type=args.split_type,
        sizes=args.split_sizes,
        seed=args.seed,
        num_folds=args.num_folds,
        args=args,
        logger=logger,
    )

    if args.dataset_type == "classification":
        class_sizes = get_class_sizes(data)
        debug("Class sizes")
        for i, task_class_sizes in enumerate(class_sizes):
            debug(
                f"{args.task_names[i]} "
                f'{", ".join(f"{cls}: {size * 100:.2f}%" for cls, size in enumerate(task_class_sizes))}'
            )

    if args.save_smiles_splits:
        save_smiles_splits(
            data_path=args.data_path,
            save_dir=args.save_dir,
            task_names=args.task_names,
            features_path=args.features_path,
            train_data=train_data,
            val_data=val_data,
            test_data=test_data,
            smiles_columns=args.smiles_columns,
        )

    if args.features_scaling:
        features_scaler = train_data.normalize_features(replace_nan_token=0)
        val_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)
    else:
        features_scaler = None

    if args.atom_descriptor_scaling and args.atom_descriptors is not None:
        atom_descriptor_scaler = train_data.normalize_features(
            replace_nan_token=0, scale_atom_descriptors=True)
        val_data.normalize_features(atom_descriptor_scaler,
                                    scale_atom_descriptors=True)
        test_data.normalize_features(atom_descriptor_scaler,
                                     scale_atom_descriptors=True)
    else:
        atom_descriptor_scaler = None

    if args.bond_feature_scaling and args.bond_features_size > 0:
        bond_feature_scaler = train_data.normalize_features(
            replace_nan_token=0, scale_bond_features=True)
        val_data.normalize_features(bond_feature_scaler,
                                    scale_bond_features=True)
        test_data.normalize_features(bond_feature_scaler,
                                     scale_bond_features=True)
    else:
        bond_feature_scaler = None

    args.train_data_size = len(train_data)

    debug(
        f"Total size = {len(data):,} | "
        f"train size = {len(train_data):,} | val size = {len(val_data):,} | test size = {len(test_data):,}"
    )

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    if args.dataset_type == "regression":
        debug("Fitting scaler")
        scaler = train_data.normalize_targets()
    else:
        scaler = None

    # Get loss function
    loss_func = get_loss_func(args)

    # Set up test set evaluation
    test_smiles, test_targets = test_data.smiles(), test_data.targets()
    if args.dataset_type == "multiclass":
        sum_test_preds = np.zeros(
            (len(test_smiles), args.num_tasks, args.multiclass_num_classes))
    else:
        sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    # Automatically determine whether to cache
    if len(data) <= args.cache_cutoff:
        set_cache_graph(True)
        num_workers = 0
    else:
        set_cache_graph(False)
        num_workers = args.num_workers

    # Create data loaders
    train_data_loader = MoleculeDataLoader(
        dataset=train_data,
        batch_size=args.batch_size,
        num_workers=num_workers,
        class_balance=args.class_balance,
        shuffle=True,
        seed=args.seed,
    )
    val_data_loader = MoleculeDataLoader(dataset=val_data,
                                         batch_size=args.batch_size,
                                         num_workers=num_workers)
    test_data_loader = MoleculeDataLoader(dataset=test_data,
                                          batch_size=args.batch_size,
                                          num_workers=num_workers)

    if args.class_balance:
        debug(
            f"With class_balance, effective train size = {train_data_loader.iter_size:,}"
        )

    # Train ensemble of models
    for model_idx in range(args.ensemble_size):
        # Tensorboard writer
        save_dir = os.path.join(args.save_dir, f"model_{model_idx}")
        makedirs(save_dir)
        try:
            writer = SummaryWriter(log_dir=save_dir)
        except:
            writer = SummaryWriter(logdir=save_dir)

        # Load/build model
        if args.checkpoint_paths is not None:
            debug(
                f"Loading model {model_idx} from {args.checkpoint_paths[model_idx]}"
            )
            model = load_checkpoint(args.checkpoint_paths[model_idx],
                                    logger=logger)
        else:
            debug(f"Building model {model_idx}")
            model = MoleculeModel(args)

        debug(model)
        debug(f"Number of parameters = {param_count(model):,}")
        if args.cuda:
            debug("Moving model to cuda")
        model = model.to(args.device)

        # Ensure that model is saved in correct location for evaluation if 0 epochs
        save_checkpoint(
            os.path.join(save_dir, MODEL_FILE_NAME),
            model,
            scaler,
            features_scaler,
            atom_descriptor_scaler,
            bond_feature_scaler,
            args,
        )

        # Optimizers
        optimizer = build_optimizer(model, args)

        # Learning rate schedulers
        scheduler = build_lr_scheduler(optimizer, args)

        # Run training
        best_score = float("inf") if args.minimize_score else -float("inf")
        best_epoch, n_iter = 0, 0
        for epoch in trange(args.epochs):
            debug(f"Epoch {epoch}")

            n_iter = train(
                model=model,
                data_loader=train_data_loader,
                loss_func=loss_func,
                optimizer=optimizer,
                scheduler=scheduler,
                args=args,
                n_iter=n_iter,
                logger=logger,
                writer=writer,
            )
            if isinstance(scheduler, ExponentialLR):
                scheduler.step()
            val_scores = evaluate(
                model=model,
                data_loader=val_data_loader,
                num_tasks=args.num_tasks,
                metrics=args.metrics,
                dataset_type=args.dataset_type,
                scaler=scaler,
                logger=logger,
            )

            for metric, scores in val_scores.items():
                # Average validation score
                avg_val_score = np.nanmean(scores)
                debug(f"Validation {metric} = {avg_val_score:.6f}")
                writer.add_scalar(f"validation_{metric}", avg_val_score,
                                  n_iter)

                if args.show_individual_scores:
                    # Individual validation scores
                    for task_name, val_score in zip(args.task_names, scores):
                        debug(
                            f"Validation {task_name} {metric} = {val_score:.6f}"
                        )
                        writer.add_scalar(f"validation_{task_name}_{metric}",
                                          val_score, n_iter)

            # Save model checkpoint if improved validation score
            avg_val_score = np.nanmean(val_scores[args.metric])
            if (args.minimize_score and avg_val_score < best_score
                    or not args.minimize_score and avg_val_score > best_score):
                best_score, best_epoch = avg_val_score, epoch
                save_checkpoint(
                    os.path.join(save_dir, MODEL_FILE_NAME),
                    model,
                    scaler,
                    features_scaler,
                    atom_descriptor_scaler,
                    bond_feature_scaler,
                    args,
                )

        # Evaluate on test set using model with best validation score
        info(
            f"Model {model_idx} best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}"
        )
        model = load_checkpoint(os.path.join(save_dir, MODEL_FILE_NAME),
                                device=args.device,
                                logger=logger)

        test_preds = predict(model=model,
                             data_loader=test_data_loader,
                             scaler=scaler)
        test_scores = evaluate_predictions(
            preds=test_preds,
            targets=test_targets,
            num_tasks=args.num_tasks,
            metrics=args.metrics,
            dataset_type=args.dataset_type,
            logger=logger,
        )

        if len(test_preds) != 0:
            sum_test_preds += np.array(test_preds)

        # Average test score
        for metric, scores in test_scores.items():
            avg_test_score = np.nanmean(scores)
            info(f"Model {model_idx} test {metric} = {avg_test_score:.6f}")
            writer.add_scalar(f"test_{metric}", avg_test_score, 0)

            if args.show_individual_scores:
                # Individual test scores
                for task_name, test_score in zip(args.task_names, scores):
                    info(
                        f"Model {model_idx} test {task_name} {metric} = {test_score:.6f}"
                    )
                    writer.add_scalar(f"test_{task_name}_{metric}", test_score,
                                      n_iter)
        writer.close()

    # Evaluate ensemble on test set
    avg_test_preds = (sum_test_preds / args.ensemble_size).tolist()

    ensemble_scores = evaluate_predictions(
        preds=avg_test_preds,
        targets=test_targets,
        num_tasks=args.num_tasks,
        metrics=args.metrics,
        dataset_type=args.dataset_type,
        logger=logger,
    )

    for metric, scores in ensemble_scores.items():
        # Average ensemble score
        avg_ensemble_test_score = np.nanmean(scores)
        info(f"Ensemble test {metric} = {avg_ensemble_test_score:.6f}")

        # Individual ensemble scores
        if args.show_individual_scores:
            for task_name, ensemble_score in zip(args.task_names, scores):
                info(
                    f"Ensemble test {task_name} {metric} = {ensemble_score:.6f}"
                )

    # Optionally save test preds
    if args.save_preds:
        test_preds_dataframe = pd.DataFrame(
            data={"smiles": test_data.smiles()})

        for i, task_name in enumerate(args.task_names):
            test_preds_dataframe[task_name] = [
                pred[i] for pred in avg_test_preds
            ]

        test_preds_dataframe.to_csv(os.path.join(args.save_dir,
                                                 "test_preds.csv"),
                                    index=False)

    return ensemble_scores