def main(): '''main method.''' args = parse_train_args() logger = create_logger(name='train', save_dir=args.save_dir, quiet=args.quiet) cross_validate(args, logger)
f'Seed {init_seed + fold_num} ==> test {args.metric} = {np.nanmean(scores):.6f}' ) if args.show_individual_scores: for task_name, score in zip(task_names, scores): info( f'Seed {init_seed + fold_num} ==> test {task_name} {args.metric} = {score:.6f}' ) # Report scores across models avg_scores = np.nanmean( all_scores, axis=1) # average score for each model across tasks mean_score, std_score = np.nanmean(avg_scores), np.nanstd(avg_scores) info(f'Overall test {args.metric} = {mean_score:.6f} +/- {std_score:.6f}') if args.show_individual_scores: for task_num, task_name in enumerate(task_names): info( f'Overall test {task_name} {args.metric} = ' f'{np.nanmean(all_scores[:, task_num]):.6f} +/- {np.nanstd(all_scores[:, task_num]):.6f}' ) return mean_score, std_score if __name__ == '__main__': args = parse_train_args() logger = create_logger(name='train', save_dir=args.save_dir, quiet=args.quiet) cross_validate(args, logger)