コード例 #1
0
    def test_predict_spectra(self,
                             name: str,
                             model_type: str,
                             expected_score: float,
                             expected_nans: int,
                             train_flags: List[str] = None,
                             predict_flags: List[str] = None):
        with TemporaryDirectory() as save_dir:
            # Train
            dataset_type = 'spectra'
            self.train(dataset_type=dataset_type,
                       metric='sid',
                       save_dir=save_dir,
                       model_type=model_type,
                       flags=train_flags)

            # Predict
            preds_path = os.path.join(save_dir, 'preds.csv')
            self.predict(dataset_type=dataset_type,
                         preds_path=preds_path,
                         save_dir=save_dir,
                         model_type=model_type,
                         flags=predict_flags)

            # Check results
            pred = pd.read_csv(preds_path)
            true = pd.read_csv(os.path.join(TEST_DATA_DIR, 'spectra.csv'))
            self.assertEqual(list(pred.keys()), list(true.keys()))
            self.assertEqual(list(pred['smiles']), list(true['smiles']))

            pred, true = pred.drop(columns=['smiles']), true.drop(
                columns=['smiles'])
            pred, true = pred.to_numpy(), true.to_numpy()
            phase_features = load_features(predict_flags[1])
            if '--spectra_phase_mask_path' in train_flags:
                mask = load_phase_mask(train_flags[5])
            else:
                mask = None
            true = normalize_spectra(true, phase_features, mask)
            sid = evaluate_predictions(preds=pred,
                                       targets=true,
                                       num_tasks=len(true[0]),
                                       metrics=['sid'],
                                       dataset_type='spectra')['sid'][0]
            self.assertAlmostEqual(sid,
                                   expected_score,
                                   delta=DELTA * expected_score)
            self.assertEqual(np.sum(np.isnan(pred)), expected_nans)
コード例 #2
0
def run_training(args: TrainArgs,
                 data: MoleculeDataset,
                 logger: Logger = None) -> Dict[str, List[float]]:
    """
    Loads data, trains a Chemprop model, and returns test scores for the model checkpoint with the highest validation score.

    :param args: A :class:`~chemprop.args.TrainArgs` object containing arguments for
                 loading data and training the Chemprop model.
    :param data: A :class:`~chemprop.data.MoleculeDataset` containing the data.
    :param logger: A logger to record output.
    :return: A dictionary mapping each metric in :code:`args.metrics` to a list of values for each task.

    """
    if logger is not None:
        debug, info = logger.debug, logger.info
    else:
        debug = info = print

    # Set pytorch seed for random initial weights
    torch.manual_seed(args.pytorch_seed)

    # Split data
    debug(f'Splitting data with seed {args.seed}')
    if args.separate_test_path:
        test_data = get_data(
            path=args.separate_test_path,
            args=args,
            features_path=args.separate_test_features_path,
            atom_descriptors_path=args.separate_test_atom_descriptors_path,
            bond_features_path=args.separate_test_bond_features_path,
            phase_features_path=args.separate_test_phase_features_path,
            smiles_columns=args.smiles_columns,
            logger=logger)
    if args.separate_val_path:
        val_data = get_data(
            path=args.separate_val_path,
            args=args,
            features_path=args.separate_val_features_path,
            atom_descriptors_path=args.separate_val_atom_descriptors_path,
            bond_features_path=args.separate_val_bond_features_path,
            phase_features_path=args.separate_val_phase_features_path,
            smiles_columns=args.smiles_columns,
            logger=logger)

    if args.separate_val_path and args.separate_test_path:
        train_data = data
    elif args.separate_val_path:
        train_data, _, test_data = split_data(data=data,
                                              split_type=args.split_type,
                                              sizes=(0.8, 0.0, 0.2),
                                              seed=args.seed,
                                              num_folds=args.num_folds,
                                              args=args,
                                              logger=logger)
    elif args.separate_test_path:
        train_data, val_data, _ = split_data(data=data,
                                             split_type=args.split_type,
                                             sizes=(0.8, 0.2, 0.0),
                                             seed=args.seed,
                                             num_folds=args.num_folds,
                                             args=args,
                                             logger=logger)
    else:
        train_data, val_data, test_data = split_data(
            data=data,
            split_type=args.split_type,
            sizes=args.split_sizes,
            seed=args.seed,
            num_folds=args.num_folds,
            args=args,
            logger=logger)

    if args.dataset_type == 'classification':
        class_sizes = get_class_sizes(data)
        debug('Class sizes')
        for i, task_class_sizes in enumerate(class_sizes):
            debug(
                f'{args.task_names[i]} '
                f'{", ".join(f"{cls}: {size * 100:.2f}%" for cls, size in enumerate(task_class_sizes))}'
            )

    if args.save_smiles_splits:
        save_smiles_splits(
            data_path=args.data_path,
            save_dir=args.save_dir,
            task_names=args.task_names,
            features_path=args.features_path,
            train_data=train_data,
            val_data=val_data,
            test_data=test_data,
            smiles_columns=args.smiles_columns,
            logger=logger,
        )

    if args.features_scaling:
        features_scaler = train_data.normalize_features(replace_nan_token=0)
        val_data.normalize_features(features_scaler)
        test_data.normalize_features(features_scaler)
    else:
        features_scaler = None

    if args.atom_descriptor_scaling and args.atom_descriptors is not None:
        atom_descriptor_scaler = train_data.normalize_features(
            replace_nan_token=0, scale_atom_descriptors=True)
        val_data.normalize_features(atom_descriptor_scaler,
                                    scale_atom_descriptors=True)
        test_data.normalize_features(atom_descriptor_scaler,
                                     scale_atom_descriptors=True)
    else:
        atom_descriptor_scaler = None

    if args.bond_feature_scaling and args.bond_features_size > 0:
        bond_feature_scaler = train_data.normalize_features(
            replace_nan_token=0, scale_bond_features=True)
        val_data.normalize_features(bond_feature_scaler,
                                    scale_bond_features=True)
        test_data.normalize_features(bond_feature_scaler,
                                     scale_bond_features=True)
    else:
        bond_feature_scaler = None

    args.train_data_size = len(train_data)

    debug(
        f'Total size = {len(data):,} | '
        f'train size = {len(train_data):,} | val size = {len(val_data):,} | test size = {len(test_data):,}'
    )

    # Initialize scaler and scale training targets by subtracting mean and dividing standard deviation (regression only)
    if args.dataset_type == 'regression':
        debug('Fitting scaler')
        scaler = train_data.normalize_targets()
    elif args.dataset_type == 'spectra':
        debug(
            'Normalizing spectra and excluding spectra regions based on phase')
        args.spectra_phase_mask = load_phase_mask(args.spectra_phase_mask_path)
        for dataset in [train_data, test_data, val_data]:
            data_targets = normalize_spectra(
                spectra=dataset.targets(),
                phase_features=dataset.phase_features(),
                phase_mask=args.spectra_phase_mask,
                excluded_sub_value=None,
                threshold=args.spectra_target_floor,
            )
            dataset.set_targets(data_targets)
        scaler = None
    else:
        scaler = None

    # Get loss function
    loss_func = get_loss_func(args)

    # Set up test set evaluation
    test_smiles, test_targets = test_data.smiles(), test_data.targets()
    if args.dataset_type == 'multiclass':
        sum_test_preds = np.zeros(
            (len(test_smiles), args.num_tasks, args.multiclass_num_classes))
    else:
        sum_test_preds = np.zeros((len(test_smiles), args.num_tasks))

    # Automatically determine whether to cache
    if len(data) <= args.cache_cutoff:
        set_cache_graph(True)
        num_workers = 0
    else:
        set_cache_graph(False)
        num_workers = args.num_workers

    # Create data loaders
    train_data_loader = MoleculeDataLoader(dataset=train_data,
                                           batch_size=args.batch_size,
                                           num_workers=num_workers,
                                           class_balance=args.class_balance,
                                           shuffle=True,
                                           seed=args.seed)
    val_data_loader = MoleculeDataLoader(dataset=val_data,
                                         batch_size=args.batch_size,
                                         num_workers=num_workers)
    test_data_loader = MoleculeDataLoader(dataset=test_data,
                                          batch_size=args.batch_size,
                                          num_workers=num_workers)

    if args.class_balance:
        debug(
            f'With class_balance, effective train size = {train_data_loader.iter_size:,}'
        )

    # Train ensemble of models
    for model_idx in range(args.ensemble_size):
        # Tensorboard writer
        save_dir = os.path.join(args.save_dir, f'model_{model_idx}')
        makedirs(save_dir)
        try:
            writer = SummaryWriter(log_dir=save_dir)
        except:
            writer = SummaryWriter(logdir=save_dir)

        # Load/build model
        if args.checkpoint_paths is not None:
            debug(
                f'Loading model {model_idx} from {args.checkpoint_paths[model_idx]}'
            )
            model = load_checkpoint(args.checkpoint_paths[model_idx],
                                    logger=logger)
        else:
            debug(f'Building model {model_idx}')
            model = MoleculeModel(args)

        # Optionally, overwrite weights:
        if args.checkpoint_frzn is not None:
            debug(
                f'Loading and freezing parameters from {args.checkpoint_frzn}.'
            )
            model = load_frzn_model(model=model,
                                    path=args.checkpoint_frzn,
                                    current_args=args,
                                    logger=logger)

        debug(model)

        if args.checkpoint_frzn is not None:
            debug(f'Number of unfrozen parameters = {param_count(model):,}')
            debug(f'Total number of parameters = {param_count_all(model):,}')
        else:
            debug(f'Number of parameters = {param_count_all(model):,}')

        if args.cuda:
            debug('Moving model to cuda')
        model = model.to(args.device)

        # Ensure that model is saved in correct location for evaluation if 0 epochs
        save_checkpoint(os.path.join(save_dir, MODEL_FILE_NAME), model, scaler,
                        features_scaler, atom_descriptor_scaler,
                        bond_feature_scaler, args)

        # Optimizers
        optimizer = build_optimizer(model, args)

        # Learning rate schedulers
        scheduler = build_lr_scheduler(optimizer, args)

        # Run training
        best_score = float('inf') if args.minimize_score else -float('inf')
        best_epoch, n_iter = 0, 0
        for epoch in trange(args.epochs):
            debug(f'Epoch {epoch}')
            n_iter = train(model=model,
                           data_loader=train_data_loader,
                           loss_func=loss_func,
                           optimizer=optimizer,
                           scheduler=scheduler,
                           args=args,
                           n_iter=n_iter,
                           logger=logger,
                           writer=writer)
            if isinstance(scheduler, ExponentialLR):
                scheduler.step()
            val_scores = evaluate(model=model,
                                  data_loader=val_data_loader,
                                  num_tasks=args.num_tasks,
                                  metrics=args.metrics,
                                  dataset_type=args.dataset_type,
                                  scaler=scaler,
                                  logger=logger)

            for metric, scores in val_scores.items():
                # Average validation score
                avg_val_score = np.nanmean(scores)
                debug(f'Validation {metric} = {avg_val_score:.6f}')
                writer.add_scalar(f'validation_{metric}', avg_val_score,
                                  n_iter)

                if args.show_individual_scores:
                    # Individual validation scores
                    for task_name, val_score in zip(args.task_names, scores):
                        debug(
                            f'Validation {task_name} {metric} = {val_score:.6f}'
                        )
                        writer.add_scalar(f'validation_{task_name}_{metric}',
                                          val_score, n_iter)

            # Save model checkpoint if improved validation score
            avg_val_score = np.nanmean(val_scores[args.metric])
            if args.minimize_score and avg_val_score < best_score or \
                    not args.minimize_score and avg_val_score > best_score:
                best_score, best_epoch = avg_val_score, epoch
                save_checkpoint(os.path.join(save_dir,
                                             MODEL_FILE_NAME), model, scaler,
                                features_scaler, atom_descriptor_scaler,
                                bond_feature_scaler, args)

        # Evaluate on test set using model with best validation score
        info(
            f'Model {model_idx} best validation {args.metric} = {best_score:.6f} on epoch {best_epoch}'
        )
        model = load_checkpoint(os.path.join(save_dir, MODEL_FILE_NAME),
                                device=args.device,
                                logger=logger)

        test_preds = predict(model=model,
                             data_loader=test_data_loader,
                             scaler=scaler)
        test_scores = evaluate_predictions(preds=test_preds,
                                           targets=test_targets,
                                           num_tasks=args.num_tasks,
                                           metrics=args.metrics,
                                           dataset_type=args.dataset_type,
                                           logger=logger)

        if len(test_preds) != 0:
            sum_test_preds += np.array(test_preds)

        # Average test score
        for metric, scores in test_scores.items():
            avg_test_score = np.nanmean(scores)
            info(f'Model {model_idx} test {metric} = {avg_test_score:.6f}')
            writer.add_scalar(f'test_{metric}', avg_test_score, 0)

            if args.show_individual_scores and args.dataset_type != 'spectra':
                # Individual test scores
                for task_name, test_score in zip(args.task_names, scores):
                    info(
                        f'Model {model_idx} test {task_name} {metric} = {test_score:.6f}'
                    )
                    writer.add_scalar(f'test_{task_name}_{metric}', test_score,
                                      n_iter)
        writer.close()

    # Evaluate ensemble on test set
    avg_test_preds = (sum_test_preds / args.ensemble_size).tolist()

    ensemble_scores = evaluate_predictions(preds=avg_test_preds,
                                           targets=test_targets,
                                           num_tasks=args.num_tasks,
                                           metrics=args.metrics,
                                           dataset_type=args.dataset_type,
                                           logger=logger)

    for metric, scores in ensemble_scores.items():
        # Average ensemble score
        avg_ensemble_test_score = np.nanmean(scores)
        info(f'Ensemble test {metric} = {avg_ensemble_test_score:.6f}')

        # Individual ensemble scores
        if args.show_individual_scores:
            for task_name, ensemble_score in zip(args.task_names, scores):
                info(
                    f'Ensemble test {task_name} {metric} = {ensemble_score:.6f}'
                )

    # Save scores
    with open(os.path.join(args.save_dir, 'test_scores.json'), 'w') as f:
        json.dump(ensemble_scores, f, indent=4, sort_keys=True)

    # Optionally save test preds
    if args.save_preds:
        test_preds_dataframe = pd.DataFrame(
            data={'smiles': test_data.smiles()})

        for i, task_name in enumerate(args.task_names):
            test_preds_dataframe[task_name] = [
                pred[i] for pred in avg_test_preds
            ]

        test_preds_dataframe.to_csv(os.path.join(args.save_dir,
                                                 'test_preds.csv'),
                                    index=False)

    return ensemble_scores