コード例 #1
0
def Test_multipleNetworks():
    networks = []

    dataGen = Data_generator.Data_gen()
    dataGen.S = 200
    dataGen.gen_data()
    size = dataGen.size
    ks = [1, 3, 5, 8, 10]

    for i in range(5):
        networks.append(nw.Network([size[0], size[1], ks[i]]))

    for k in range(500):
        for i in range(len(networks)):
            networks[i].Training(data=dataGen.Data, dt=0.001, p=1)
            print("value network #", str(i), ": ", networks[i].total_value)

    for j in range(len(networks)):
        networkName = "network-" + str(j) + "-map"
        Inter.trak(networks[i], dataGen.A, networkName)
コード例 #2
0
ファイル: Product.py プロジェクト: bibliotecadebabel/EvAI
def create_objects(status):
    status.Data_gen=dgen.Data_gen()
    status.Data_gen.S=status.S
    status.Data_gen.Comp=status.Comp
    status.Data_gen.gen_data()
    def add_node(g,i):
            node=nd.Node()
            q=qu.Quadrant(i)
            p=tplane.tangent_plane()
            node.objects.append(q)
            q.objects.append(p)
            g.add_node(i,node)
            #status.objects.append(node)
    #Initializes graph
    g=gr.Graph()
    add_node(g,0)
    k=0
    while k<status.dx:
        add_node(g,k+1)
        g.add_edges(k,[k+1])
        k=k+1
    k=0
    status.objects=list(g.key2node.values())
    node=status.objects[0]
    sf.safe_update(status.nets,0,
        nw.Network([status.Data_gen.size[0],
            status.Data_gen.size[1],2]))
    p=node_plane(node)
    #Initializes particles
    while k<status.n:
        par=particle()
        par.position.append(node)
        par.velocity.append(node)
        #print(status.Data_gen.size)
        par.objects.append(status.nets[0])
        p.particles.append(par)
        p.num_particles+=1
        k=k+1
    #Initializes conectivity radius
    attach_balls(status,status.r)
コード例 #3
0
ファイル: test.py プロジェクト: bibliotecadebabel/EvAI
    #network.addFilters()
    print("Entrenando la red mutada \n")
    network.Training(data=data, dt=0.001, p=100)
    print("mutando la red: Eliminando Filtro \n")
    network.deleteFilters()
    print("Entrenando la red mutada \n")
    network.Training(data=data, dt=0.001, p=1000)


x = 10
y = 10
k = 3

objects = Functions.np.full((3), (x, y, k))

network = nw.Network([x, y, k])

data = []

generateData(data, objects, 100)

Test_modifyNetwork(network, data)
"""

print('testing node 3')
Test_node_3(network)
print('testing node 2 label=c')
Test_node_2(network)
print('testing node 2 label=n')
Test_node_2(network,"n")
print('testing node 1')
コード例 #4
0
ファイル: Trak.py プロジェクト: bibliotecadebabel/EvAI
#data=Op.Sample((size[0],size[1]),A,S)
#data.insert(0,x)
data = Op.SampleVer2((size[0], size[1]), A, S, "n")

imageTarget = []
imageTarget.append(x)
imageTarget.append("c")

data.insert(0, imageTarget)

print('Training Net')

#Net=Net0.Network((size[0],size[1]))

networkParameters = np.full((3), (size[0], size[1], k))
Net = network.Network(networkParameters)
l = ['C']
i = 0
while i < S:
    l.append('N')
    i = i + 1
Net.Training(data=data, dt=dt, p=p)
print("finish training")
np.save(Net_name + ' w-node', Net.nodes[0].objects[0].value)

print('Scaning Image')
Inter.trak(Net, A, Net_name + ' map')
"""x=np.load('data.npy')
Shap=np.shape(x)
l=['C']
i=0
コード例 #5
0

def generateImageRandom(objects):
    image = Functions.np.zeros((objects[0], objects[1], 3), dtype=float)

    for i in range(objects[0]):
        for j in range(objects[1]):
            image[i, j] = [
                Functions.random.randint(1, 1),
                Functions.random.randint(1, 1),
                Functions.random.randint(1, 1)
            ]

    return image


x = 2
y = 2
k = 50

objects = Functions.np.full((3), (x, y, k))

network = nw.Network(objects)
data = []

generateData(data, objects, 100)

network.Training(data=data, dt=0.01, p=0.9)

#print("valor 50: ",network.Predict(data[50]))