def test_mrcompletion(self): Ac = cp.cspmatrix(self.symb) + self.A Y = cp.mrcompletion(Ac) C = Y * Y.T Ap = cp.cspmatrix(Ac.symb) Ap.add_projection(C, beta=0.0, reordered=True) diff = list((Ac.spmatrix() - Ap.spmatrix()).V) self.assertAlmostEqualLists(diff, len(diff) * [0.0]) U = normal(17, 2) cp.syr2(Ac, U[:, 0], U[:, 0], alpha=0.5, beta=0.0) cp.syr2(Ac, U[:, 1], U[:, 1], alpha=0.5, beta=1.0) Y = cp.mrcompletion(Ac) Ap.add_projection(Y * Y.T, beta=0.0, reordered=True) diff = list((Ac.spmatrix() - Ap.spmatrix()).V) self.assertAlmostEqualLists(diff, len(diff) * [0.0]) Ap.add_projection(U * U.T, beta=0.0, reordered=False) diff = list((Ac.spmatrix() - Ap.spmatrix()).V) self.assertAlmostEqualLists(diff, len(diff) * [0.0])
def kernel_matrix(X, kernel, sigma=1.0, theta=1.0, degree=1, V=None, width=None): """ Computes the kernel matrix or a partial kernel matrix. Input arguments. X is an N x n matrix. kernel is a string with values 'linear', 'rfb', 'poly', or 'tanh'. 'linear': k(u,v) = u'*v/sigma. 'rbf': k(u,v) = exp(-||u - v||^2 / (2*sigma)). 'poly': k(u,v) = (u'*v/sigma)**degree. 'tanh': k(u,v) = tanh(u'*v/sigma - theta). kernel is a sigma and theta are positive numbers. degree is a positive integer. V is an N x N sparse matrix (default is None). width is a positive integer (default is None). Output. Q, an N x N matrix or sparse matrix. If V is a sparse matrix, a partial kernel matrix with the sparsity pattern V is returned. If width is specified and V = 'band', a partial kernel matrix with band sparsity is returned (width is the half-bandwidth). a, an N x 1 matrix with the products <xi,xi>/sigma. """ N, n = X.size #### dense (full) kernel matrix if V is None: if verbose: print("building kernel matrix ..") # Qij = xi'*xj / sigma Q = matrix(0.0, (N, N)) blas.syrk(X, Q, alpha=1.0 / sigma) a = Q[::N + 1] # ai = ||xi||**2 / sigma if kernel == 'linear': pass elif kernel == 'rbf': # Qij := Qij - 0.5 * ( ai + aj ) # = -||xi - xj||^2 / (2*sigma) ones = matrix(1.0, (N, 1)) blas.syr2(a, ones, Q, alpha=-0.5) Q = exp(Q) elif kernel == 'tanh': Q = exp(Q - theta) Q = div(Q - Q**-1, Q + Q**-1) elif kernel == 'poly': Q = Q**degree else: raise ValueError('invalid kernel type') #### general sparse partial kernel matrix elif type(V) is cvxopt.base.spmatrix: if verbose: print("building projected kernel matrix ...") Q = +V base.syrk(X, Q, partial=True, alpha=1.0 / sigma) # ai = ||xi||**2 / sigma a = matrix(Q[::N + 1], (N, 1)) if kernel == 'linear': pass elif kernel == 'rbf': ones = matrix(1.0, (N, 1)) # Qij := Qij - 0.5 * ( ai + aj ) # = -||xi - xj||^2 / (2*sigma) p = chompack.maxcardsearch(V) symb = chompack.symbolic(Q, p) Qc = chompack.cspmatrix(symb) + Q chompack.syr2(Qc, a, ones, alpha=-0.5) Q = Qc.spmatrix(reordered=False) Q.V = exp(Q.V) elif kernel == 'tanh': v = +Q.V v = exp(v - theta) v = div(v - v**-1, v + v**-1) Q.V = v elif kernel == 'poly': Q.V = Q.V**degree else: raise ValueError('invalid kernel type') #### banded partial kernel matrix elif V == 'band' and width is not None: # Lower triangular part of band matrix with bandwidth 2*w+1. if verbose: print("building projected kernel matrix ...") I = [i for k in range(N) for i in range(k, min(width + k + 1, N))] J = [k for k in range(N) for i in range(min(width + 1, N - k))] V = matrix(0.0, (len(I), 1)) oy = 0 for k in range(N): # V[:,k] = Xtrain[k:k+w, :] * Xtrain[k,:].T m = min(width + 1, N - k) blas.gemv(X, X, V, m=m, ldA=N, incx=N, offsetA=k, offsetx=k, offsety=oy) oy += m blas.scal(1.0 / sigma, V) # ai = ||xi||**2 / sigma a = matrix(V[[i for i in range(len(I)) if I[i] == J[i]]], (N, 1)) if kernel == 'linear': Q = spmatrix(V, I, J, (N, N)) elif kernel == 'rbf': Q = spmatrix(V, I, J, (N, N)) ones = matrix(1.0, (N, 1)) # Qij := Qij - 0.5 * ( ai + aj ) # = -||xi - xj||^2 / (2*sigma) symb = chompack.symbolic(Q) Qc = chompack.cspmatrix(symb) + Q chompack.syr2(Qc, a, ones, alpha=-0.5) Q = Qc.spmatrix(reordered=False) Q.V = exp(Q.V) elif kernel == 'tanh': V = exp(V - theta) V = div(V - V**-1, V + V**-1) Q = spmatrix(V, I, J, (N, N)) elif kernel == 'poly': Q = spmatrix(V**degree, I, J, (N, N)) else: raise ValueError('invalid kernel type') else: raise TypeError('invalid type V') return Q, a