コード例 #1
0
    def make(self, key):

        # fetch behavior and ephys sample rates
        fs_beh = int((acquisition.BehaviorRecording
                      & key).fetch1('behavior_recording_sample_rate'))
        fs_ephys = int((acquisition.EphysRecording
                        & key).fetch1('ephys_recording_sample_rate'))

        # fetch condition time (behavior time base)
        t_beh = (pacman_acquisition.Behavior.Condition
                 & key).fetch1('condition_time')
        n_samples = len(t_beh)

        # make condition time in ephys time base
        t_ephys, _ = pacman_acquisition.ConditionParams.target_force_profile(
            key['condition_id'], fs_ephys)

        # fetch spike rasters (ephys time base)
        spike_raster_keys = (NeuronSpikeRaster & key).fetch(as_dict=True)

        # rebin spike raster to behavior time base
        time_bin_edges = np.append(
            t_beh, t_beh[-1] + (1 + np.arange(2)) / fs_beh) - 1 / (2 * fs_beh)
        spike_bins = [np.digitize(t_ephys[spike_raster_key['neuron_spike_raster']], time_bin_edges) - 1 \
                      for spike_raster_key in spike_raster_keys]
        spike_bins = [b[(b >= 0) & (b < len(t_beh))] for b in spike_bins]

        for spike_raster_key, spk_bins in zip(spike_raster_keys, spike_bins):
            spike_raster_key['neuron_spike_raster'] = np.zeros(n_samples,
                                                               dtype=bool)
            spike_raster_key['neuron_spike_raster'][spk_bins] = 1

        # get filter kernel
        filter_key = (processing.Filter &
                      (pacman_processing.FilterParams & key)).fetch1('KEY')
        filter_parts = datajointutils.get_parts(processing.Filter,
                                                context=inspect.currentframe())
        filter_rel = next(part for part in filter_parts if part & filter_key)

        # filter rebinned spike raster
        neuron_rate_keys = spike_raster_keys.copy()
        [
            neuron_rate_key.update(
                filter_params_id=key['filter_params_id'],
                neuron_rate=fs_beh * filter_rel().filt(
                    neuron_rate_key['neuron_spike_raster'], fs_beh))
            for neuron_rate_key in neuron_rate_keys
        ]

        # remove spike rasters
        [
            neuron_rate_key.pop('neuron_spike_raster')
            for neuron_rate_key in neuron_rate_keys
        ]

        # insert neuron rates
        self.insert(neuron_rate_keys, skip_duplicates=True)
コード例 #2
0
    def proj_rank(self):
        """Project rank in all child target tables and joins with master."""

        target_children = datajointutils.get_parts(ConditionParams.Target)

        target_ranks = [
            dj.U('condition_id', 'condition_rank') & (x & self).proj_rank()
            for x in target_children
        ]

        ranked_self = reduce(lambda x, y: x + y, target_ranks)

        return ranked_self
コード例 #3
0
    def proj_label(self, n_sigfigs: int = 4):
        """Project label in all child target tables and joins with master."""

        target_children = datajointutils.get_parts(ConditionParams.Target)

        target_labels = [
            dj.U('condition_id', 'condition_label') &
            (x & self).proj_label(n_sigfigs=n_sigfigs) for x in target_children
        ]

        labeled_self = reduce(lambda x, y: x + y, target_labels)

        return labeled_self
コード例 #4
0
    def make(self, key):

        # trial source
        trial_source = (pacman_processing.BehaviorTrialAlignment & 'valid_alignment') \
            * pacman_processing.FilterParams & key

        # convert raw force signal to Newtons
        trial_rel = pacman_acquisition.Behavior.Trial & trial_source
        force_data = trial_rel.process_force(data_type='raw',
                                             apply_filter=False,
                                             keep_keys=True)

        # get filter kernel
        filter_key = (processing.Filter &
                      (pacman_processing.FilterParams & key)).fetch1('KEY')
        filter_parts = datajointutils.get_parts(processing.Filter,
                                                context=inspect.currentframe())
        filter_rel = next(part for part in filter_parts if part & filter_key)

        # filter raw data
        fs = (acquisition.BehaviorRecording
              & key).fetch1('behavior_recording_sample_rate')
        [
            frc.update(force_filt_offline=filter_rel().filt(
                frc['force_raw_online'], fs)) for frc in force_data
        ]

        # fetch alignment indices and cast as integers
        behavior_alignment = (trial_source).fetch('behavior_alignment',
                                                  order_by='trial')
        behavior_alignment = list(
            map(lambda x: x.astype(int), behavior_alignment))

        # append key and align raw and filtered forces
        [
            frc.update(force_raw=frc['force_raw_online'][align_idx],
                       force_filt=frc['force_filt_offline'][align_idx])
            for frc, align_idx in zip(force_data, behavior_alignment)
        ]

        # pop pre-aligned data
        for f_key in ['force_raw_online', 'force_filt_offline']:
            [frc.pop(f_key) for frc in force_data]

        # merge key with force data
        key = [dict(key, **frc) for frc in force_data]

        # insert aligned forces
        self.insert(key)
コード例 #5
0
    def make(self, key):

        # fetch ephys sample rates
        fs_ephys = int((acquisition.EphysRecording & key).fetch1('ephys_recording_sample_rate'))

        # fetch condition time (behavior time base)
        t_beh = (pacman_acquisition.Behavior.Condition & key).fetch1('condition_time')

        # make condition time in ephys time base
        t_ephys, _ = pacman_acquisition.ConditionParams.target_force_profile(key['condition_id'], fs_ephys)

        # fetch raw emg data
        emg_attributes = (Emg & key).fetch(as_dict=True)

        # highpass filter and rectify raw emg signals
        [emg_attr.update(emg_envelope=abs(processing.Filter.Butterworth().filt(emg_attr['emg_signal'], fs_ephys, order=2, low_cut=40)))
            for emg_attr in emg_attributes];

        # remove raw emg signal
        [emg_attr.pop('emg_signal') for emg_attr in emg_attributes];

        # get filter kernel
        filter_key = (processing.Filter & (pacman_processing.FilterParams & key)).fetch1('KEY')
        filter_parts = datajointutils.get_parts(processing.Filter, context=inspect.currentframe())
        filter_rel = next(part for part in filter_parts if part & filter_key)

        # smooth rectified emg signals to construct envelope and remove 
        [emg_attr.update(
            filter_params_id=key['filter_params_id'],
            emg_envelope=filter_rel().filt(emg_attr['emg_envelope'], fs_ephys)
        ) for emg_attr in emg_attributes];

        # resample emg to behavior time base
        [emg_attr.update(
            emg_envelope=np.interp(t_beh, t_ephys, emg_attr['emg_envelope'])
        ) for emg_attr in emg_attributes];

        # insert emg envelopes
        self.insert(emg_attributes)