def test_SPDHG_vs_PDHG_implicit(self): data = dataexample.SIMPLE_PHANTOM_2D.get(size=(128, 128)) ig = data.geometry ig.voxel_size_x = 0.1 ig.voxel_size_y = 0.1 detectors = ig.shape[0] angles = np.linspace(0, np.pi, 90) ag = AcquisitionGeometry('parallel', '2D', angles, detectors, pixel_size_h=0.1, angle_unit='radian') # Select device dev = 'cpu' Aop = AstraProjectorSimple(ig, ag, dev) sin = Aop.direct(data) # Create noisy data. Apply Gaussian noise noises = ['gaussian', 'poisson'] noise = noises[1] noisy_data = ag.allocate() if noise == 'poisson': np.random.seed(10) scale = 20 eta = 0 noisy_data.fill( np.random.poisson(scale * (eta + sin.as_array())) / scale) elif noise == 'gaussian': np.random.seed(10) n1 = np.random.normal(0, 0.1, size=ag.shape) noisy_data.fill(n1 + sin.as_array()) else: raise ValueError('Unsupported Noise ', noise) # Create BlockOperator operator = Aop f = KullbackLeibler(b=noisy_data) alpha = 0.005 g = alpha * TotalVariation(50, 1e-4, lower=0) normK = operator.norm() #% 'implicit' PDHG, preconditioned step-sizes tau_tmp = 1. sigma_tmp = 1. tau = sigma_tmp / operator.adjoint( tau_tmp * operator.range_geometry().allocate(1.)) sigma = tau_tmp / operator.direct( sigma_tmp * operator.domain_geometry().allocate(1.)) # initial = operator.domain_geometry().allocate() # # Setup and run the PDHG algorithm pdhg = PDHG(f=f, g=g, operator=operator, tau=tau, sigma=sigma, max_iteration=1000, update_objective_interval=500) pdhg.run(verbose=0) subsets = 10 size_of_subsets = int(len(angles) / subsets) # take angles and create uniform subsets in uniform+sequential setting list_angles = [ angles[i:i + size_of_subsets] for i in range(0, len(angles), size_of_subsets) ] # create acquisitioin geometries for each the interval of splitting angles list_geoms = [ AcquisitionGeometry('parallel', '2D', list_angles[i], detectors, pixel_size_h=0.1, angle_unit='radian') for i in range(len(list_angles)) ] # create with operators as many as the subsets A = BlockOperator(*[ AstraProjectorSimple(ig, list_geoms[i], dev) for i in range(subsets) ]) ## number of subsets #(sub2ind, ind2sub) = divide_1Darray_equally(range(len(A)), subsets) # ## acquisisiton data AD_list = [] for sub_num in range(subsets): for i in range(0, len(angles), size_of_subsets): arr = noisy_data.as_array()[i:i + size_of_subsets, :] AD_list.append( AcquisitionData(arr, geometry=list_geoms[sub_num])) g = BlockDataContainer(*AD_list) ## block function F = BlockFunction(*[KullbackLeibler(b=g[i]) for i in range(subsets)]) G = alpha * TotalVariation(50, 1e-4, lower=0) prob = [1 / len(A)] * len(A) spdhg = SPDHG(f=F, g=G, operator=A, max_iteration=1000, update_objective_interval=200, prob=prob) spdhg.run(1000, verbose=0) from cil.utilities.quality_measures import mae, mse, psnr qm = (mae(spdhg.get_output(), pdhg.get_output()), mse(spdhg.get_output(), pdhg.get_output()), psnr(spdhg.get_output(), pdhg.get_output())) if debug_print: print("Quality measures", qm) np.testing.assert_almost_equal(mae(spdhg.get_output(), pdhg.get_output()), 0.000335, decimal=3) np.testing.assert_almost_equal(mse(spdhg.get_output(), pdhg.get_output()), 5.51141e-06, decimal=3)
def test_SPDHG_vs_PDHG_explicit(self): data = dataexample.SIMPLE_PHANTOM_2D.get(size=(128, 128)) ig = data.geometry ig.voxel_size_x = 0.1 ig.voxel_size_y = 0.1 detectors = ig.shape[0] angles = np.linspace(0, np.pi, 180) ag = AcquisitionGeometry('parallel', '2D', angles, detectors, pixel_size_h=0.1, angle_unit='radian') # Select device dev = 'cpu' Aop = AstraProjectorSimple(ig, ag, dev) sin = Aop.direct(data) # Create noisy data. Apply Gaussian noise noises = ['gaussian', 'poisson'] noise = noises[1] if noise == 'poisson': scale = 5 noisy_data = scale * applynoise.poisson(sin / scale, seed=10) # np.random.seed(10) # scale = 5 # eta = 0 # noisy_data = AcquisitionData(np.random.poisson( scale * (eta + sin.as_array()))/scale, ag) elif noise == 'gaussian': noisy_data = noise.gaussian(sin, var=0.1, seed=10) # np.random.seed(10) # n1 = np.random.normal(0, 0.1, size = ag.shape) # noisy_data = AcquisitionData(n1 + sin.as_array(), ag) else: raise ValueError('Unsupported Noise ', noise) #%% 'explicit' SPDHG, scalar step-sizes subsets = 10 size_of_subsets = int(len(angles) / subsets) # create Gradient operator op1 = GradientOperator(ig) # take angles and create uniform subsets in uniform+sequential setting list_angles = [ angles[i:i + size_of_subsets] for i in range(0, len(angles), size_of_subsets) ] # create acquisitioin geometries for each the interval of splitting angles list_geoms = [ AcquisitionGeometry('parallel', '2D', list_angles[i], detectors, pixel_size_h=0.1, angle_unit='radian') for i in range(len(list_angles)) ] # create with operators as many as the subsets A = BlockOperator(*[ AstraProjectorSimple(ig, list_geoms[i], dev) for i in range(subsets) ] + [op1]) ## number of subsets #(sub2ind, ind2sub) = divide_1Darray_equally(range(len(A)), subsets) # ## acquisisiton data ## acquisisiton data AD_list = [] for sub_num in range(subsets): for i in range(0, len(angles), size_of_subsets): arr = noisy_data.as_array()[i:i + size_of_subsets, :] AD_list.append( AcquisitionData(arr, geometry=list_geoms[sub_num])) g = BlockDataContainer(*AD_list) alpha = 0.5 ## block function F = BlockFunction(*[ *[KullbackLeibler(b=g[i]) for i in range(subsets)] + [alpha * MixedL21Norm()] ]) G = IndicatorBox(lower=0) prob = [1 / (2 * subsets)] * (len(A) - 1) + [1 / 2] spdhg = SPDHG(f=F, g=G, operator=A, max_iteration=1000, update_objective_interval=200, prob=prob) spdhg.run(1000, verbose=0) #%% 'explicit' PDHG, scalar step-sizes op1 = GradientOperator(ig) op2 = Aop # Create BlockOperator operator = BlockOperator(op1, op2, shape=(2, 1)) f2 = KullbackLeibler(b=noisy_data) g = IndicatorBox(lower=0) normK = operator.norm() sigma = 1 / normK tau = 1 / normK f1 = alpha * MixedL21Norm() f = BlockFunction(f1, f2) # Setup and run the PDHG algorithm pdhg = PDHG(f=f, g=g, operator=operator, tau=tau, sigma=sigma) pdhg.max_iteration = 1000 pdhg.update_objective_interval = 200 pdhg.run(1000, verbose=0) #%% show diff between PDHG and SPDHG # plt.imshow(spdhg.get_output().as_array() -pdhg.get_output().as_array()) # plt.colorbar() # plt.show() from cil.utilities.quality_measures import mae, mse, psnr qm = (mae(spdhg.get_output(), pdhg.get_output()), mse(spdhg.get_output(), pdhg.get_output()), psnr(spdhg.get_output(), pdhg.get_output())) if debug_print: print("Quality measures", qm) np.testing.assert_almost_equal(mae(spdhg.get_output(), pdhg.get_output()), 0.00150, decimal=3) np.testing.assert_almost_equal(mse(spdhg.get_output(), pdhg.get_output()), 1.68590e-05, decimal=3)
tau = np.asarray([1 / normK for _ in range(len(SBK))]) sigma = np.asarray([1 / normK for _ in range(len(SBK))]) spdhg = SPDHG( f=BF, g=ZF, operator=SBK, gamma=.5, max_iteration=pdhg.max_iteration * 64, update_objective_interval=1000, # tau=tau, sigma=sigma ) #%% spdhg.update_objective_interval = 100 spdhg.run(100, verbose=2) # %% plotter2D(spdhg.solution, cmap='gist_earth') # %% from ipywidgets import interact @interact(choice=['apples', 'oranges']) def somef(choice): print("Chosen", choice) # interact(somef, choice=['apples','oranges']) # %% # import astra # from astra import astra_dict, algorithm, data3d