コード例 #1
0
    r_nonneg = 1
    r_printing = 0
    g_CCPI_reg_toolkit = CCPiReg_FGP_TV(r_alpha, r_iterations, r_tolerance, r_iso, r_nonneg, r_printing, 'cpu')

    t2 = timer()
    res2 = g_CCPI_reg_toolkit.proximal(noisy_data, 1.)
    t3 = timer()
    print(t3-t2)
    
    plt.figure()
    plt.imshow(np.abs(res1.as_array()-res2.as_array()))
    plt.colorbar()
    plt.title("Difference CIL_FGP_TV vs CCPi_FGP_TV")
    plt.show()          
    
    print("MAE" , mae(res1, res2))
    np.testing.assert_array_almost_equal(res1.as_array(), res2.as_array(), decimal=3)    
    
    ###################################################################
    ###################################################################
    ###################################################################
    ###################################################################
    print("Compare CIL_FGP_TV vs CCPiReg_FGP_TV no tolerance (3D)") 
        
    print ("Building 3D phantom using TomoPhantom software")
    model = 13 # select a model number from the library
    N_size = 64 # Define phantom dimensions using a scalar value (cubic phantom)
    path = os.path.dirname(tomophantom.__file__)
    path_library3D = os.path.join(path, "Phantom3DLibrary.dat")
    #This will generate a N_size x N_size x N_size phantom (3D)
    phantom_tm = TomoP3D.Model(model, N_size, path_library3D)    
コード例 #2
0
    def test_SPDHG_vs_SPDHG_explicit_axpby(self):
        data = dataexample.SIMPLE_PHANTOM_2D.get(size=(128, 128))
        if debug_print:
            print("test_SPDHG_vs_SPDHG_explicit_axpby here")
        ig = data.geometry
        ig.voxel_size_x = 0.1
        ig.voxel_size_y = 0.1

        detectors = ig.shape[0]
        angles = np.linspace(0, np.pi, 180)
        ag = AcquisitionGeometry('parallel',
                                 '2D',
                                 angles,
                                 detectors,
                                 pixel_size_h=0.1,
                                 angle_unit='radian')
        # Select device
        # device = input('Available device: GPU==1 / CPU==0 ')
        # if device=='1':
        #     dev = 'gpu'
        # else:
        #     dev = 'cpu'
        dev = 'cpu'

        Aop = AstraProjectorSimple(ig, ag, dev)

        sin = Aop.direct(data)
        # Create noisy data. Apply Gaussian noise
        noises = ['gaussian', 'poisson']
        noise = noises[1]
        if noise == 'poisson':
            np.random.seed(10)
            scale = 5
            eta = 0
            noisy_data = AcquisitionData(
                np.random.poisson(scale * (eta + sin.as_array())) / scale,
                geometry=ag)
        elif noise == 'gaussian':
            np.random.seed(10)
            n1 = np.random.normal(0, 0.1, size=ag.shape)
            noisy_data = AcquisitionData(n1 + sin.as_array(), geometry=ag)

        else:
            raise ValueError('Unsupported Noise ', noise)

        #%% 'explicit' SPDHG, scalar step-sizes
        subsets = 10
        size_of_subsets = int(len(angles) / subsets)
        # create GradientOperator operator
        op1 = GradientOperator(ig)
        # take angles and create uniform subsets in uniform+sequential setting
        list_angles = [
            angles[i:i + size_of_subsets]
            for i in range(0, len(angles), size_of_subsets)
        ]
        # create acquisitioin geometries for each the interval of splitting angles
        list_geoms = [
            AcquisitionGeometry('parallel',
                                '2D',
                                list_angles[i],
                                detectors,
                                pixel_size_h=0.1,
                                angle_unit='radian')
            for i in range(len(list_angles))
        ]
        # create with operators as many as the subsets
        A = BlockOperator(*[
            AstraProjectorSimple(ig, list_geoms[i], dev)
            for i in range(subsets)
        ] + [op1])
        ## number of subsets
        #(sub2ind, ind2sub) = divide_1Darray_equally(range(len(A)), subsets)
        #
        ## acquisisiton data
        ## acquisisiton data
        AD_list = []
        for sub_num in range(subsets):
            for i in range(0, len(angles), size_of_subsets):
                arr = noisy_data.as_array()[i:i + size_of_subsets, :]
                AD_list.append(
                    AcquisitionData(arr, geometry=list_geoms[sub_num]))

        g = BlockDataContainer(*AD_list)

        alpha = 0.5
        ## block function
        F = BlockFunction(*[
            *[KullbackLeibler(b=g[i])
              for i in range(subsets)] + [alpha * MixedL21Norm()]
        ])
        G = IndicatorBox(lower=0)

        prob = [1 / (2 * subsets)] * (len(A) - 1) + [1 / 2]
        algos = []
        algos.append(
            SPDHG(f=F,
                  g=G,
                  operator=A,
                  max_iteration=1000,
                  update_objective_interval=200,
                  prob=prob.copy(),
                  use_axpby=True))
        algos[0].run(1000, verbose=0)

        algos.append(
            SPDHG(f=F,
                  g=G,
                  operator=A,
                  max_iteration=1000,
                  update_objective_interval=200,
                  prob=prob.copy(),
                  use_axpby=False))
        algos[1].run(1000, verbose=0)

        # np.testing.assert_array_almost_equal(algos[0].get_output().as_array(), algos[1].get_output().as_array())
        from cil.utilities.quality_measures import mae, mse, psnr
        qm = (mae(algos[0].get_output(), algos[1].get_output()),
              mse(algos[0].get_output(), algos[1].get_output()),
              psnr(algos[0].get_output(), algos[1].get_output()))
        if debug_print:
            print("Quality measures", qm)
        assert qm[0] < 0.005
        assert qm[1] < 3.e-05
コード例 #3
0
    def test_SPDHG_vs_PDHG_explicit(self):
        data = dataexample.SIMPLE_PHANTOM_2D.get(size=(128, 128))

        ig = data.geometry
        ig.voxel_size_x = 0.1
        ig.voxel_size_y = 0.1

        detectors = ig.shape[0]
        angles = np.linspace(0, np.pi, 180)
        ag = AcquisitionGeometry('parallel',
                                 '2D',
                                 angles,
                                 detectors,
                                 pixel_size_h=0.1,
                                 angle_unit='radian')
        # Select device
        dev = 'cpu'

        Aop = AstraProjectorSimple(ig, ag, dev)

        sin = Aop.direct(data)
        # Create noisy data. Apply Gaussian noise
        noises = ['gaussian', 'poisson']
        noise = noises[1]
        if noise == 'poisson':
            scale = 5
            noisy_data = scale * applynoise.poisson(sin / scale, seed=10)
            # np.random.seed(10)
            # scale = 5
            # eta = 0
            # noisy_data = AcquisitionData(np.random.poisson( scale * (eta + sin.as_array()))/scale, ag)
        elif noise == 'gaussian':
            noisy_data = noise.gaussian(sin, var=0.1, seed=10)
            # np.random.seed(10)
            # n1 = np.random.normal(0, 0.1, size = ag.shape)
            # noisy_data = AcquisitionData(n1 + sin.as_array(), ag)

        else:
            raise ValueError('Unsupported Noise ', noise)

        #%% 'explicit' SPDHG, scalar step-sizes
        subsets = 10
        size_of_subsets = int(len(angles) / subsets)
        # create Gradient operator
        op1 = GradientOperator(ig)
        # take angles and create uniform subsets in uniform+sequential setting
        list_angles = [
            angles[i:i + size_of_subsets]
            for i in range(0, len(angles), size_of_subsets)
        ]
        # create acquisitioin geometries for each the interval of splitting angles
        list_geoms = [
            AcquisitionGeometry('parallel',
                                '2D',
                                list_angles[i],
                                detectors,
                                pixel_size_h=0.1,
                                angle_unit='radian')
            for i in range(len(list_angles))
        ]
        # create with operators as many as the subsets
        A = BlockOperator(*[
            AstraProjectorSimple(ig, list_geoms[i], dev)
            for i in range(subsets)
        ] + [op1])
        ## number of subsets
        #(sub2ind, ind2sub) = divide_1Darray_equally(range(len(A)), subsets)
        #
        ## acquisisiton data
        ## acquisisiton data
        AD_list = []
        for sub_num in range(subsets):
            for i in range(0, len(angles), size_of_subsets):
                arr = noisy_data.as_array()[i:i + size_of_subsets, :]
                AD_list.append(
                    AcquisitionData(arr, geometry=list_geoms[sub_num]))

        g = BlockDataContainer(*AD_list)
        alpha = 0.5
        ## block function
        F = BlockFunction(*[
            *[KullbackLeibler(b=g[i])
              for i in range(subsets)] + [alpha * MixedL21Norm()]
        ])
        G = IndicatorBox(lower=0)

        prob = [1 / (2 * subsets)] * (len(A) - 1) + [1 / 2]
        spdhg = SPDHG(f=F,
                      g=G,
                      operator=A,
                      max_iteration=1000,
                      update_objective_interval=200,
                      prob=prob)
        spdhg.run(1000, verbose=0)

        #%% 'explicit' PDHG, scalar step-sizes
        op1 = GradientOperator(ig)
        op2 = Aop
        # Create BlockOperator
        operator = BlockOperator(op1, op2, shape=(2, 1))
        f2 = KullbackLeibler(b=noisy_data)
        g = IndicatorBox(lower=0)
        normK = operator.norm()
        sigma = 1 / normK
        tau = 1 / normK

        f1 = alpha * MixedL21Norm()
        f = BlockFunction(f1, f2)
        # Setup and run the PDHG algorithm
        pdhg = PDHG(f=f, g=g, operator=operator, tau=tau, sigma=sigma)
        pdhg.max_iteration = 1000
        pdhg.update_objective_interval = 200
        pdhg.run(1000, verbose=0)

        #%% show diff between PDHG and SPDHG
        # plt.imshow(spdhg.get_output().as_array() -pdhg.get_output().as_array())
        # plt.colorbar()
        # plt.show()

        from cil.utilities.quality_measures import mae, mse, psnr
        qm = (mae(spdhg.get_output(),
                  pdhg.get_output()), mse(spdhg.get_output(),
                                          pdhg.get_output()),
              psnr(spdhg.get_output(), pdhg.get_output()))
        if debug_print:
            print("Quality measures", qm)
        np.testing.assert_almost_equal(mae(spdhg.get_output(),
                                           pdhg.get_output()),
                                       0.00150,
                                       decimal=3)
        np.testing.assert_almost_equal(mse(spdhg.get_output(),
                                           pdhg.get_output()),
                                       1.68590e-05,
                                       decimal=3)
コード例 #4
0
    def test_SPDHG_vs_PDHG_implicit(self):

        data = dataexample.SIMPLE_PHANTOM_2D.get(size=(128, 128))

        ig = data.geometry
        ig.voxel_size_x = 0.1
        ig.voxel_size_y = 0.1

        detectors = ig.shape[0]
        angles = np.linspace(0, np.pi, 90)
        ag = AcquisitionGeometry('parallel',
                                 '2D',
                                 angles,
                                 detectors,
                                 pixel_size_h=0.1,
                                 angle_unit='radian')
        # Select device
        dev = 'cpu'

        Aop = AstraProjectorSimple(ig, ag, dev)

        sin = Aop.direct(data)
        # Create noisy data. Apply Gaussian noise
        noises = ['gaussian', 'poisson']
        noise = noises[1]
        noisy_data = ag.allocate()
        if noise == 'poisson':
            np.random.seed(10)
            scale = 20
            eta = 0
            noisy_data.fill(
                np.random.poisson(scale * (eta + sin.as_array())) / scale)
        elif noise == 'gaussian':
            np.random.seed(10)
            n1 = np.random.normal(0, 0.1, size=ag.shape)
            noisy_data.fill(n1 + sin.as_array())

        else:
            raise ValueError('Unsupported Noise ', noise)

        # Create BlockOperator
        operator = Aop
        f = KullbackLeibler(b=noisy_data)
        alpha = 0.005
        g = alpha * TotalVariation(50, 1e-4, lower=0)
        normK = operator.norm()

        #% 'implicit' PDHG, preconditioned step-sizes
        tau_tmp = 1.
        sigma_tmp = 1.
        tau = sigma_tmp / operator.adjoint(
            tau_tmp * operator.range_geometry().allocate(1.))
        sigma = tau_tmp / operator.direct(
            sigma_tmp * operator.domain_geometry().allocate(1.))
        #    initial = operator.domain_geometry().allocate()

        #    # Setup and run the PDHG algorithm
        pdhg = PDHG(f=f,
                    g=g,
                    operator=operator,
                    tau=tau,
                    sigma=sigma,
                    max_iteration=1000,
                    update_objective_interval=500)
        pdhg.run(verbose=0)

        subsets = 10
        size_of_subsets = int(len(angles) / subsets)
        # take angles and create uniform subsets in uniform+sequential setting
        list_angles = [
            angles[i:i + size_of_subsets]
            for i in range(0, len(angles), size_of_subsets)
        ]
        # create acquisitioin geometries for each the interval of splitting angles
        list_geoms = [
            AcquisitionGeometry('parallel',
                                '2D',
                                list_angles[i],
                                detectors,
                                pixel_size_h=0.1,
                                angle_unit='radian')
            for i in range(len(list_angles))
        ]
        # create with operators as many as the subsets
        A = BlockOperator(*[
            AstraProjectorSimple(ig, list_geoms[i], dev)
            for i in range(subsets)
        ])
        ## number of subsets
        #(sub2ind, ind2sub) = divide_1Darray_equally(range(len(A)), subsets)
        #
        ## acquisisiton data
        AD_list = []
        for sub_num in range(subsets):
            for i in range(0, len(angles), size_of_subsets):
                arr = noisy_data.as_array()[i:i + size_of_subsets, :]
                AD_list.append(
                    AcquisitionData(arr, geometry=list_geoms[sub_num]))

        g = BlockDataContainer(*AD_list)

        ## block function
        F = BlockFunction(*[KullbackLeibler(b=g[i]) for i in range(subsets)])
        G = alpha * TotalVariation(50, 1e-4, lower=0)

        prob = [1 / len(A)] * len(A)
        spdhg = SPDHG(f=F,
                      g=G,
                      operator=A,
                      max_iteration=1000,
                      update_objective_interval=200,
                      prob=prob)
        spdhg.run(1000, verbose=0)
        from cil.utilities.quality_measures import mae, mse, psnr
        qm = (mae(spdhg.get_output(),
                  pdhg.get_output()), mse(spdhg.get_output(),
                                          pdhg.get_output()),
              psnr(spdhg.get_output(), pdhg.get_output()))
        if debug_print:
            print("Quality measures", qm)

        np.testing.assert_almost_equal(mae(spdhg.get_output(),
                                           pdhg.get_output()),
                                       0.000335,
                                       decimal=3)
        np.testing.assert_almost_equal(mse(spdhg.get_output(),
                                           pdhg.get_output()),
                                       5.51141e-06,
                                       decimal=3)
コード例 #5
0
    def test_PDHG_vs_PDHG_explicit_axpby(self):
        data = dataexample.SIMPLE_PHANTOM_2D.get(size=(128, 128))
        if debug_print:
            print("test_PDHG_vs_PDHG_explicit_axpby here")
        ig = data.geometry
        ig.voxel_size_x = 0.1
        ig.voxel_size_y = 0.1

        detectors = ig.shape[0]
        angles = np.linspace(0, np.pi, 180)
        ag = AcquisitionGeometry('parallel',
                                 '2D',
                                 angles,
                                 detectors,
                                 pixel_size_h=0.1,
                                 angle_unit='radian')

        dev = 'cpu'

        Aop = AstraProjectorSimple(ig, ag, dev)

        sin = Aop.direct(data)
        # Create noisy data. Apply Gaussian noise
        noises = ['gaussian', 'poisson']
        noise = noises[1]
        if noise == 'poisson':
            np.random.seed(10)
            scale = 5
            eta = 0
            noisy_data = AcquisitionData(
                np.random.poisson(scale * (eta + sin.as_array())) / scale,
                geometry=ag)
        elif noise == 'gaussian':
            np.random.seed(10)
            n1 = np.random.normal(0, 0.1, size=ag.shape)
            noisy_data = AcquisitionData(n1 + sin.as_array(), geometry=ag)

        else:
            raise ValueError('Unsupported Noise ', noise)

        alpha = 0.5
        op1 = GradientOperator(ig)
        op2 = Aop
        # Create BlockOperator
        operator = BlockOperator(op1, op2, shape=(2, 1))
        f2 = KullbackLeibler(b=noisy_data)
        g = IndicatorBox(lower=0)
        normK = operator.norm()
        sigma = 1. / normK
        tau = 1. / normK

        f1 = alpha * MixedL21Norm()
        f = BlockFunction(f1, f2)
        # Setup and run the PDHG algorithm

        algos = []
        algos.append(
            PDHG(f=f,
                 g=g,
                 operator=operator,
                 tau=tau,
                 sigma=sigma,
                 max_iteration=1000,
                 update_objective_interval=200,
                 use_axpby=True))
        algos[0].run(1000, verbose=0)

        algos.append(
            PDHG(f=f,
                 g=g,
                 operator=operator,
                 tau=tau,
                 sigma=sigma,
                 max_iteration=1000,
                 update_objective_interval=200,
                 use_axpby=False))
        algos[1].run(1000, verbose=0)

        from cil.utilities.quality_measures import mae, mse, psnr
        qm = (mae(algos[0].get_output(), algos[1].get_output()),
              mse(algos[0].get_output(), algos[1].get_output()),
              psnr(algos[0].get_output(), algos[1].get_output()))
        if debug_print:
            print("Quality measures", qm)
        np.testing.assert_array_less(qm[0], 0.005)
        np.testing.assert_array_less(qm[1], 3e-05)
コード例 #6
0
    def test_compare_regularisation_toolkit(self):

        print("Compare CIL_FGP_TV vs CCPiReg_FGP_TV no tolerance (2D)")

        data = dataexample.SHAPES.get()
        ig = data.geometry
        ag = ig

        # Create noisy data.
        n1 = np.random.normal(0, 0.1, size=ig.shape)
        noisy_data = ig.allocate()
        noisy_data.fill(n1 + data.as_array())

        alpha = 0.1
        iters = 1000

        # CIL_FGP_TV no tolerance
        g_CIL = alpha * TotalVariation(
            iters, tolerance=None, lower=0, info=True)
        t0 = timer()
        res1 = g_CIL.proximal(noisy_data, 1.)
        t1 = timer()
        print(t1 - t0)

        # CCPi Regularisation toolkit high tolerance
        r_alpha = alpha
        r_iterations = iters
        r_tolerance = 1e-9
        r_iso = 0
        r_nonneg = 1
        r_printing = 0
        g_CCPI_reg_toolkit = CCPiReg_FGP_TV(r_alpha, r_iterations, r_tolerance,
                                            r_iso, r_nonneg, r_printing, 'cpu')

        t2 = timer()
        res2 = g_CCPI_reg_toolkit.proximal(noisy_data, 1.)
        t3 = timer()
        print(t3 - t1)

        np.testing.assert_array_almost_equal(res1.as_array(),
                                             res2.as_array(),
                                             decimal=4)

        ###################################################################
        ###################################################################
        ###################################################################
        ###################################################################

        print("Compare CIL_FGP_TV vs CCPiReg_FGP_TV with iterations.")
        iters = 408
        # CIL_FGP_TV no tolerance
        g_CIL = alpha * TotalVariation(iters, tolerance=1e-9, lower=0.)
        t0 = timer()
        res1 = g_CIL.proximal(noisy_data, 1.)
        t1 = timer()
        print(t1 - t0)

        # CCPi Regularisation toolkit high tolerance
        r_alpha = alpha
        r_iterations = iters
        r_tolerance = 1e-9
        r_iso = 0
        r_nonneg = 1
        r_printing = 0
        g_CCPI_reg_toolkit = CCPiReg_FGP_TV(r_alpha, r_iterations, r_tolerance,
                                            r_iso, r_nonneg, r_printing, 'cpu')

        t2 = timer()
        res2 = g_CCPI_reg_toolkit.proximal(noisy_data, 1.)
        t3 = timer()
        print(t3 - t2)

        print(mae(res1, res2))
        np.testing.assert_array_almost_equal(res1.as_array(),
                                             res2.as_array(),
                                             decimal=3)