コード例 #1
0
    def _apply_unitary_(self, args: cirq.ApplyUnitaryArgs
                        ) -> Optional[np.ndarray]:
        if cirq.is_parameterized(self):
            return None
        am = cirq.unitary(cirq.Rx(-np.pi * self.exponent * self.weights[0]))
        bm = cirq.unitary(cirq.Rx(-np.pi * self.exponent * self.weights[1]))
        cm = cirq.unitary(cirq.Rx(-np.pi * self.exponent * self.weights[2]))

        a1 = args.subspace_index(0b1001)
        b1 = args.subspace_index(0b0101)
        c1 = args.subspace_index(0b0011)

        a2 = args.subspace_index(0b0110)
        b2 = args.subspace_index(0b1010)
        c2 = args.subspace_index(0b1100)

        cirq.apply_matrix_to_slices(args.target_tensor,
                                    am,
                                    slices=[a1, a2],
                                    out=args.available_buffer)
        cirq.apply_matrix_to_slices(args.available_buffer,
                                    bm,
                                    slices=[b1, b2],
                                    out=args.target_tensor)
        return cirq.apply_matrix_to_slices(args.target_tensor,
                                           cm,
                                           slices=[c1, c2],
                                           out=args.available_buffer)
コード例 #2
0
    def _apply_unitary_(self,
                        args: cirq.ApplyUnitaryArgs) -> Optional[np.ndarray]:
        if cirq.is_parameterized(self):
            return NotImplemented

        am, bm, cm = (la.expm(-1j * self.exponent *
                              np.array([[0, w], [w.conjugate(), 0]]))
                      for w in self.weights)

        a1 = args.subspace_index(0b1001)
        b1 = args.subspace_index(0b0101)
        c1 = args.subspace_index(0b0011)

        a2 = args.subspace_index(0b0110)
        b2 = args.subspace_index(0b1010)
        c2 = args.subspace_index(0b1100)

        cirq.apply_matrix_to_slices(args.target_tensor,
                                    am,
                                    slices=[a1, a2],
                                    out=args.available_buffer)
        cirq.apply_matrix_to_slices(args.available_buffer,
                                    bm,
                                    slices=[b1, b2],
                                    out=args.target_tensor)
        return cirq.apply_matrix_to_slices(args.target_tensor,
                                           cm,
                                           slices=[c1, c2],
                                           out=args.available_buffer)
コード例 #3
0
    def _apply_unitary_(self,
                        args: cirq.ApplyUnitaryArgs) -> Optional[np.ndarray]:
        if self.exponent != 1:
            return None

        oi = args.subspace_index(0b01)
        io = args.subspace_index(0b10)
        ii = args.subspace_index(0b11)
        args.available_buffer[oi] = args.target_tensor[oi]
        args.target_tensor[oi] = args.target_tensor[io]
        args.target_tensor[io] = args.available_buffer[oi]
        args.target_tensor[ii] *= -1
        return args.target_tensor
コード例 #4
0
 def _apply_unitary_(self, args: cirq.ApplyUnitaryArgs
                     ) -> Optional[np.ndarray]:
     if cirq.is_parameterized(self):
         return None
     inner_matrix = cirq.unitary(cirq.rx(-2 * np.pi * self.exponent))
     a = args.subspace_index(0b0011)
     b = args.subspace_index(0b1100)
     return cirq.apply_matrix_to_slices(args.target_tensor,
                                        inner_matrix,
                                        slices=[a, b],
                                        out=args.available_buffer)
コード例 #5
0
 def _apply_unitary_(self,
                     args: cirq.ApplyUnitaryArgs) -> Optional[np.ndarray]:
     if cirq.is_parameterized(self):
         return None
     inner_matrix = cirq.unitary(cirq.Ry(-self.exponent * np.pi))
     oi = args.subspace_index(0b01)
     io = args.subspace_index(0b10)
     return cirq.apply_matrix_to_slices(args.target_tensor,
                                        inner_matrix,
                                        slices=[oi, io],
                                        out=args.available_buffer)
コード例 #6
0
 def _apply_unitary_(self, args: cirq.ApplyUnitaryArgs) -> np.ndarray:
     i = args.subspace_index(1)
     args.target_tensor[i] *= self.power * 2
     return args.target_tensor
コード例 #7
0
 def _apply_unitary_(self, args: cirq.ApplyUnitaryArgs) -> np.ndarray:
     o = args.subspace_index(0)
     i = args.subspace_index(1)
     args.available_buffer[o] = args.target_tensor[i]
     args.available_buffer[i] = args.target_tensor[o]
     return args.available_buffer
コード例 #8
0
 def _apply_unitary_(self, args: cirq.ApplyUnitaryArgs) -> np.ndarray:
     one = args.subspace_index(1)
     args.target_tensor[one] *= -1
     return args.target_tensor
コード例 #9
0
 def _apply_unitary_(self, args: cirq.ApplyUnitaryArgs) -> np.ndarray:
     zero = args.subspace_index(0)
     one = args.subspace_index(1)
     args.available_buffer[zero] = args.target_tensor[zero]
     args.available_buffer[one] = -args.target_tensor[one]
     return args.available_buffer