コード例 #1
0
ファイル: download.py プロジェクト: gtolias/how
def download_datasets(datasets, dataset_url, globals):
    """Download data associated with each required dataset"""

    if "val_eccv20" in datasets:
        download_train(globals['root_path'])
        io_helpers.download_files(["retrieval-SfM-120k-val-eccv2020.pkl"],
                                  globals['root_path'] / "train/retrieval-SfM-120k",
                                  dataset_url, logfunc=globals["logger"].info)
    elif "train" in datasets:
        download_train(globals['root_path'])

    if "roxford5k" in datasets or "rparis6k" in datasets:
        download_test(globals['root_path'])
コード例 #2
0
ファイル: testdataset.py プロジェクト: MING410/how
def configdataset():

    #dataset = dataset.lower()

    # if dataset not in DATASETS:
    #     raise ValueError('Unknown dataset: {}!'.format(dataset))

    # loading imlist, qimlist, and gnd, in cfg as a dict
    #dataset's path
    #gnd_fname = os.path.join(dir_main, dataset, 'gnd_{}.pkl'.format(dataset))
    # gnd_fname = os.path.join(dir_main, dataset, 'gnd_{}.pkl'.format(dataset))
    # with open(gnd_fname, 'rb') as f:
    #     cfg = pickle.load(f)
    # cfg['gnd_fname'] = gnd_fname
    cfg = download_test()
    # cfg['ext'] = '.jpg'
    # cfg['qext'] = '.jpg'
    #cfg['dir_data'] = os.path.join(dir_main, dataset)
    cfg['dir_images'] = cfg['png_file']
    cfg['gnd'] = cfg['l_file']
    cfg['n'] = len(cfg['imlist'])
    cfg['nq'] = len(cfg['qimlist'])
    #file path
    cfg['im_fname'] = config_imname
    cfg['qim_fname'] = config_qimname

    return cfg
コード例 #3
0
def main():
    args = parser.parse_args()

    # check if there are unknown datasets
    for dataset in args.datasets.split(','):
        if dataset not in datasets_names:
            raise ValueError(
                'Unsupported or unknown dataset: {}!'.format(dataset))

    # check if test dataset are downloaded
    # and download if they are not
    download_train(get_data_root())
    download_test(get_data_root())

    # setting up the visible GPU
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # loading network from path
    if args.network_path is not None:

        print(">> Loading network:\n>>>> '{}'".format(args.network_path))
        if args.network_path in PRETRAINED:
            # pretrained networks (downloaded automatically)
            state = load_url(PRETRAINED[args.network_path],
                             model_dir=os.path.join(get_data_root(),
                                                    'networks'))
        else:
            # fine-tuned network from path
            state = torch.load(args.network_path)

        # parsing net params from meta
        # architecture, pooling, mean, std required
        # the rest has default values, in case that is doesnt exist
        net_params = {}
        net_params['architecture'] = state['meta']['architecture']
        net_params['pooling'] = state['meta']['pooling']
        net_params['local_whitening'] = state['meta'].get(
            'local_whitening', False)
        net_params['regional'] = state['meta'].get('regional', False)
        net_params['whitening'] = state['meta'].get('whitening', False)
        net_params['mean'] = state['meta']['mean']
        net_params['std'] = state['meta']['std']
        net_params['pretrained'] = False

        # load network
        net = init_network(net_params)
        net.load_state_dict(state['state_dict'])

        # if whitening is precomputed
        if 'Lw' in state['meta']:
            net.meta['Lw'] = state['meta']['Lw']

        print(">>>> loaded network: ")
        print(net.meta_repr())

    # loading offtheshelf network
    elif args.network_offtheshelf is not None:

        # parse off-the-shelf parameters
        offtheshelf = args.network_offtheshelf.split('-')
        net_params = {}
        net_params['architecture'] = offtheshelf[0]
        net_params['pooling'] = offtheshelf[1]
        net_params['local_whitening'] = 'lwhiten' in offtheshelf[2:]
        net_params['regional'] = 'reg' in offtheshelf[2:]
        net_params['whitening'] = 'whiten' in offtheshelf[2:]
        net_params['pretrained'] = True

        # load off-the-shelf network
        print(">> Loading off-the-shelf network:\n>>>> '{}'".format(
            args.network_offtheshelf))
        net = init_network(net_params)
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # setting up the multi-scale parameters
    ms = list(eval(args.multiscale))
    if len(ms) > 1 and net.meta['pooling'] == 'gem' and not net.meta[
            'regional'] and not net.meta['whitening']:
        msp = net.pool.p.item()
        print(">> Set-up multiscale:")
        print(">>>> ms: {}".format(ms))
        print(">>>> msp: {}".format(msp))
    else:
        msp = 1

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()

    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # compute whitening
    if args.whitening is not None:
        start = time.time()

        if 'Lw' in net.meta and args.whitening in net.meta['Lw']:

            print('>> {}: Whitening is precomputed, loading it...'.format(
                args.whitening))

            if len(ms) > 1:
                Lw = net.meta['Lw'][args.whitening]['ms']
            else:
                Lw = net.meta['Lw'][args.whitening]['ss']

        else:

            # if we evaluate networks from path we should save/load whitening
            # not to compute it every time
            if args.network_path is not None:
                whiten_fn = args.network_path + '_{}_whiten'.format(
                    args.whitening)
                if len(ms) > 1:
                    whiten_fn += '_ms'
                whiten_fn += '.pth'
            else:
                whiten_fn = None

            if whiten_fn is not None and os.path.isfile(whiten_fn):
                print('>> {}: Whitening is precomputed, loading it...'.format(
                    args.whitening))
                Lw = torch.load(whiten_fn)

            else:
                print('>> {}: Learning whitening...'.format(args.whitening))

                # loading db
                db_root = os.path.join(get_data_root(), 'train',
                                       args.whitening)
                ims_root = os.path.join(db_root, 'ims')
                db_fn = os.path.join(db_root,
                                     '{}-whiten.pkl'.format(args.whitening))
                with open(db_fn, 'rb') as f:
                    db = pickle.load(f)
                images = [
                    cid2filename(db['cids'][i], ims_root)
                    for i in range(len(db['cids']))
                ]

                # extract whitening vectors
                print('>> {}: Extracting...'.format(args.whitening))
                wvecs = extract_vectors(net,
                                        images,
                                        args.image_size,
                                        transform,
                                        ms=ms,
                                        msp=msp)

                # learning whitening
                print('>> {}: Learning...'.format(args.whitening))
                wvecs = wvecs.numpy()
                m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
                Lw = {'m': m, 'P': P}

                # saving whitening if whiten_fn exists
                if whiten_fn is not None:
                    print('>> {}: Saving to {}...'.format(
                        args.whitening, whiten_fn))
                    torch.save(Lw, whiten_fn)

        print('>> {}: elapsed time: {}'.format(args.whitening,
                                               htime(time.time() - start)))

    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.datasets.split(',')
    for dataset in datasets:
        start = time.time()

        print('>> {}: Extracting...'.format(dataset))

        # extract database and query vectors
        print('>> {}: database images...'.format(dataset))
        images = get_imlist("E:\\PycharmProjects\\image-retrieval\\holiday2\\")
        names = []
        for i, img_path in enumerate(images):
            img_name = os.path.split(img_path)[1]
            print(img_name)
            names.append(img_name)
        # prepare config structure for the test dataset
        # cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
        # images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
        # try:
        #     bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]
        # except:
        #     bbxs = None  # for holidaysmanrot and copydays

        # names = []
        # for i, img_path in enumerate(images):
        #     img_name = os.path.split(img_path)[1]
        #     print(img_name)
        #     names.append(img_name)

        # extract database and query vectors
        print('>> {}: database images...'.format(dataset))
        vecs = extract_vectors(net,
                               images,
                               args.image_size,
                               transform,
                               ms=ms,
                               msp=msp)

        # convert to numpy
        vecs = vecs.numpy()
        vecs = vecs.T
        print("--------------------------------------------------")
        print("      writing feature extraction results ...")
        print("--------------------------------------------------")
        output = "gem_res_holiday_3.h5"
        h5f = h5py.File(output, 'w')
        h5f.create_dataset('dataset_1', data=vecs)
        h5f.create_dataset('dataset_2', data=np.string_(names))
        h5f.close()

        print('>> {}: elapsed time: {}'.format(dataset,
                                               htime(time.time() - start)))
import os
from cirtorch.utils.download import download_test
from cirtorch.utils.general import get_root

data_root = os.path.join(get_root(), 'cirtorch')
download_test(data_root)
コード例 #5
0
def make_dataloader(args, config, rank=None, world_size=None):
    general_config = config["general"]
    data_config = config["dataloader"]

    # Manually check if there are unknown test datasets
    for dataset in data_config.getstruct("test_datasets"):
        if dataset not in test_datasets_names:
            raise ValueError(
                'Unsupported or unknown test dataset: {}!'.format(dataset))

    # Check if test datasets are available, download it if  not !
    download_train(args.data)
    download_test(args.data)

    # Data Loader
    log_debug("Creating dataloaders for dataset in %s", args.data)

    train_tf = TuplesTransform(
        shortest_size=data_config.getint("train_shortest_size"),
        longest_max_size=data_config.getint("train_longest_max_size"),
        rgb_mean=data_config.getstruct("rgb_mean"),
        rgb_std=data_config.getstruct("rgb_std"),
        random_flip=data_config.getboolean("random_flip"),
        random_scale=data_config.getstruct("random_scale"))

    # Training dataloader
    train_db = TuplesDataset(root_dir=args.data,
                             name=data_config.get("training_dataset"),
                             mode='train',
                             neg_num=data_config.getint("neg_num"),
                             query_size=data_config.getint("train_query_size"),
                             pool_size=data_config.getint("train_pool_size"),
                             transform=train_tf,
                             batch_size=data_config.getint("train_batch_size"),
                             num_workers=data_config.getint("num_workers"))

    train_sampler = TuplesDistributedARBatchSampler(
        train_db,
        batch_size=data_config.getint("train_batch_size"),
        num_replicas=world_size,
        rank=rank,
        drop_last=True)

    train_dl = data.DataLoader(train_db,
                               batch_sampler=train_sampler,
                               collate_fn=iss_collate_fn,
                               pin_memory=True,
                               num_workers=data_config.getint("num_workers"),
                               shuffle=False)

    # Validation dataloader
    val_tf = TuplesTransform(
        shortest_size=data_config.getint("train_shortest_size"),
        longest_max_size=data_config.getint("train_longest_max_size"),
        rgb_mean=data_config.getstruct("rgb_mean"),
        rgb_std=data_config.getstruct("rgb_std"),
        random_flip=data_config.getboolean("random_flip"),
        random_scale=data_config.getstruct("random_scale"))

    val_db = TuplesDataset(
        root_dir=args.data,
        name=data_config.get("training_dataset"),
        mode='val',
        neg_num=data_config.getint("neg_num"),
        query_size=float('inf'),
        pool_size=float('inf'),
        #query_size=data_config.getint("train_query_size"),
        #pool_size=data_config.getint("train_pool_size"),
        transform=val_tf,
        batch_size=data_config.getint("train_batch_size"),
        num_workers=data_config.getint("num_workers"))

    val_sampler = TuplesDistributedARBatchSampler(
        val_db,
        batch_size=data_config.getint("train_batch_size"),
        num_replicas=world_size,
        rank=rank,
        drop_last=True)

    val_dl = data.DataLoader(val_db,
                             batch_sampler=val_sampler,
                             collate_fn=iss_collate_fn,
                             pin_memory=True,
                             num_workers=data_config.getint("num_workers"),
                             shuffle=False)
    return train_dl, val_dl
コード例 #6
0
def main():
    args = parser.parse_args()

    # check if there are unknown datasets
    for dataset in args.datasets.split(','):
        if dataset not in datasets_names:
            raise ValueError(
                'Unsupported or unknown dataset: {}!'.format(dataset))

    # check if test dataset are downloaded
    # and download if they are not
    download_train(get_data_root())
    download_test(get_data_root())

    # setting up the visible GPU
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # loading network
    # pretrained networks (downloaded automatically)
    print(">> Loading network:\n>>>> '{}'".format(args.network))
    state = load_url(PRETRAINED[args.network],
                     model_dir=os.path.join(get_data_root(), 'networks'))
    # parsing net params from meta
    # architecture, pooling, mean, std required
    # the rest has default values, in case that is doesnt exist
    net_params = {}
    net_params['architecture'] = state['meta']['architecture']
    net_params['pooling'] = state['meta']['pooling']
    net_params['local_whitening'] = state['meta'].get('local_whitening', False)
    net_params['regional'] = state['meta'].get('regional', False)
    net_params['whitening'] = state['meta'].get('whitening', False)
    net_params['mean'] = state['meta']['mean']
    net_params['std'] = state['meta']['std']
    net_params['pretrained'] = False
    # network initialization
    net = init_network(net_params)
    net.load_state_dict(state['state_dict'])

    print(">>>> loaded network: ")
    print(net.meta_repr())

    # setting up the multi-scale parameters
    ms = list(eval(args.multiscale))
    print(">>>> Evaluating scales: {}".format(ms))

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()

    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # evaluate on test datasets
    datasets = args.datasets.split(',')
    for dataset in datasets:
        start = time.time()

        print('>> {}: Extracting...'.format(dataset))

        # prepare config structure for the test dataset
        cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
        images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
        qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
        try:
            bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]
        except:
            bbxs = None  # for holidaysmanrot and copydays

        # extract database and query vectors
        print('>> {}: database images...'.format(dataset))
        vecs = extract_vectors(net, images, args.image_size, transform, ms=ms)
        print('>> {}: query images...'.format(dataset))
        qvecs = extract_vectors(net,
                                qimages,
                                args.image_size,
                                transform,
                                bbxs=bbxs,
                                ms=ms)

        print('>> {}: Evaluating...'.format(dataset))

        # convert to numpy
        vecs = vecs.numpy()
        qvecs = qvecs.numpy()

        # search, rank, and print
        scores = np.dot(vecs.T, qvecs)
        ranks = np.argsort(-scores, axis=0)

        top_k = 100
        ranks_fnames_qs = []
        for q_id in range(len(cfg["qimlist"])):
            ranks_q = list(ranks[:top_k, q_id])
            ranks_fname_per_q = []
            for img_id in ranks_q:
                ranks_fname_per_q.append(cfg["imlist"][img_id])
            ranks_fnames_qs.append(ranks_fname_per_q)

        compute_map_and_print(dataset, ranks, cfg['gnd'])
        compute_map_and_print_top_k(dataset, ranks_fnames_qs, cfg['gnd'],
                                    cfg["imlist"])

        sys.exit()
        with open(dataset + "_gl18_tl_resnet101_gem_w_m.pkl", "wb") as f:
            data = {"ranks": ranks, "db_images": images, "q_images": qimages}
            pickle.dump(data, f)

        print('>> {}: elapsed time: {}'.format(dataset,
                                               htime(time.time() - start)))
コード例 #7
0
def main():
    args = parser.parse_args()

    # check if test dataset are downloaded
    # and download if they are not
    download_train(get_data_root())
    download_test(get_data_root())

    # setting up the visible GPU
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # loading network from path
    if args.network_path is not None:
        print(">> Loading network:\n>>>> '{}'".format(args.network_path))
        state = torch.load(args.network_path)
        net = init_network(model=state['meta']['architecture'],
                           pooling=state['meta']['pooling'],
                           whitening=state['meta']['whitening'],
                           mean=state['meta']['mean'],
                           std=state['meta']['std'],
                           pretrained=False)
        net.load_state_dict(state['state_dict'])
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # loading offtheshelf network
    elif args.network_offtheshelf is not None:
        offtheshelf = args.network_offtheshelf.split('-')
        if len(offtheshelf) == 3:
            if offtheshelf[2] == 'whiten':
                offtheshelf_whiten = True
            else:
                raise (RuntimeError(
                    "Incorrect format of the off-the-shelf network. Examples: resnet101-gem | resnet101-gem-whiten"
                ))
        else:
            offtheshelf_whiten = False
        print(">> Loading off-the-shelf network:\n>>>> '{}'".format(
            args.network_offtheshelf))
        net = init_network(model=offtheshelf[0],
                           pooling=offtheshelf[1],
                           whitening=offtheshelf_whiten)
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # setting up the multi-scale parameters
    ms = [1]
    msp = 1
    if args.multiscale:
        ms = [1, 1. / math.sqrt(2), 1. / 2]
        if net.meta['pooling'] == 'gem' and net.whiten is None:
            msp = net.pool.p.data.tolist()[0]

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()
    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # compute whitening
    if args.whitening is not None:
        start = time.time()

        print('>> {}: Learning whitening...'.format(args.whitening))

        # loading db
        db_root = os.path.join(get_data_root(), 'train', args.whitening)
        ims_root = os.path.join(db_root, 'ims')
        db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.whitening))
        with open(db_fn, 'rb') as f:
            db = pickle.load(f)
        images = [
            cid2filename(db['cids'][i], ims_root)
            for i in range(len(db['cids']))
        ]

        # extract whitening vectors
        print('>> {}: Extracting...'.format(args.whitening))
        wvecs = extract_vectors(net,
                                images,
                                args.image_size,
                                transform,
                                ms=ms,
                                msp=msp)

        # learning whitening
        print('>> {}: Learning...'.format(args.whitening))
        wvecs = wvecs.numpy()
        m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
        Lw = {'m': m, 'P': P}

        print('>> {}: elapsed time: {}'.format(args.whitening,
                                               htime(time.time() - start)))
    else:
        Lw = None

    datasets = args.datasets.split(',')
    for dataset in datasets:
        start = time.time()

        print('>> {}: Extracting...'.format(dataset))

        if dataset == 'reco':
            images, qimages = landmark_recognition_dataset()
            bbxs = [None for x in qimages]

        elif dataset == 'retr':
            images, _ = landmark_retrieval_dataset()
            qimages = []
            bbxs = [None for x in qimages]

        else:
            # prepare config structure for the test dataset
            cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
            images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
            qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
            bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]

        with open('%s_fnames.pkl' % dataset, 'wb') as f:
            pickle.dump([images, qimages], f)

        # extract database and query vectors
        print('>> {}: database images...'.format(dataset))
        vecs = extract_vectors(net,
                               images,
                               args.image_size,
                               transform,
                               ms=ms,
                               msp=msp)
        vecs = vecs.numpy()
        print('>> saving')
        np.save('{}_vecs.npy'.format(dataset), vecs)

        if len(qimages) > 0:
            print('>> {}: query images...'.format(dataset))
            qvecs = extract_vectors(net,
                                    qimages,
                                    args.image_size,
                                    transform,
                                    bbxs=bbxs,
                                    ms=ms,
                                    msp=msp)
            qvecs = qvecs.numpy()
            np.save('{}_qvecs.npy'.format(dataset), qvecs)

        if Lw is not None:
            # whiten the vectors
            vecs_lw = whitenapply(vecs, Lw['m'], Lw['P'])
            qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'])

            # TODO

        print('>> {}: elapsed time: {}'.format(dataset,
                                               htime(time.time() - start)))
コード例 #8
0
def main():
    global args, min_loss
    args = parser.parse_args()

    # manually check if there are unknown test datasets
    for dataset in args.test_datasets.split(','):
        if dataset not in test_datasets_names:
            raise ValueError('Unsupported or unknown test dataset: {}!'.format(dataset))

    # check if test dataset are downloaded
    # and download if they are not
    download_train(get_data_root())
    download_test(get_data_root())

    # create export dir if it doesnt exist
    directory = "{}".format(args.training_dataset)
    directory += "_{}".format(args.arch)
    directory += "_{}".format(args.pool)
    if args.local_whitening:
        directory += "_lwhiten"
    if args.regional:
        directory += "_r"
    if args.whitening:
        directory += "_whiten"
    if not args.pretrained:
        directory += "_notpretrained"
    directory += "_{}_m{:.2f}".format(args.loss, args.loss_margin)
    directory += "_{}_lr{:.1e}_wd{:.1e}".format(args.optimizer, args.lr, args.weight_decay)
    directory += "_nnum{}_qsize{}_psize{}".format(args.neg_num, args.query_size, args.pool_size)
    directory += "_bsize{}_uevery{}_imsize{}".format(args.batch_size, args.update_every, args.image_size)

    args.directory = os.path.join(args.directory, directory)
    print(">> Creating directory if it does not exist:\n>> '{}'".format(args.directory))
    if not os.path.exists(args.directory):
        os.makedirs(args.directory)

    # set cuda visible device
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id
    
    # set random seeds
    # TODO: maybe pass as argument in future implementation?
    torch.manual_seed(0)
    torch.cuda.manual_seed_all(0)
    np.random.seed(0)

    # initialize model
    if args.pretrained:
        print(">> Using pre-trained model '{}'".format(args.arch))
    else:
        print(">> Using model from scratch (random weights) '{}'".format(args.arch))
    model_params = {}
    model_params['architecture'] = args.arch
    model_params['pooling'] = args.pool
    model_params['local_whitening'] = args.local_whitening
    model_params['regional'] = args.regional
    model_params['whitening'] = args.whitening
    # model_params['mean'] = ...  # will use default
    # model_params['std'] = ...  # will use default
    model_params['pretrained'] = args.pretrained
    model = init_network(model_params)

    # move network to gpu
    model.cuda()

    if model_params['pooling'] == 'netvlad':
        normalize = torchvision.transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
        transform = torchvision.transforms.Compose([
            torchvision.transforms.Resize(size=(364, 364)),
            torchvision.transforms.ToTensor(),
            normalize,
        ])

        image_folder = folder.ImageFolder(root="/mnt/m2/dataset", transform=transform)

        train_loader = torch.utils.data.DataLoader(
            image_folder,
            batch_size=64,
            num_workers=8,
            shuffle=True
        )

        n_batches = 10

        descs_list = []
        i = 0
        with torch.no_grad():
            for x, _ in train_loader:
                model.eval()
                desc = model.compute_features(x.cuda())
                max_pooled_feat_3 = torch.nn.functional.max_pool2d(desc, kernel_size=3, stride=1)
                max_pooled_feat_2 = torch.nn.functional.max_pool2d(desc, kernel_size=2, stride=1)

                reshaped_pool_3 = make_locals(max_pooled_feat_3)
                reshaped_pool_2 = make_locals(max_pooled_feat_2)

                desc = torch.cat([reshaped_pool_2, reshaped_pool_3], dim=1)

                # N, dim, h, w = desc.shape
                # desc = desc.view(N, dim, h*w).permute(0, 2, 1).reshape(N, -1, 512)
                desc = desc.cpu().numpy().astype('float32')
                descs_list.append(desc)
                print(">> Extracted batch {}/{} - NetVLAD initialization -".format(i+1, n_batches))
                i+=1
                if i == n_batches:
                    break

        descs_list = np.array(descs_list).reshape(-1, 512)
        print(descs_list.shape)
        print(">> Sampling local features ")
        # locals = np.vstack((m[np.random.randint(len(m), size=150)] for m in descs_list)).astype('float32')
        locals = descs_list[np.random.randint(len(descs_list), size=len(descs_list)//3)]

        np.random.shuffle(locals)
        print(">> Locals extracted shape : {}".format(locals.shape))

        n_clust = 64

        locals = preprocessing.normalize(locals, axis=1)

        print(">> Fitting centroids with K-Means")
        kmeans = MiniBatchKMeans(n_clusters=n_clust).fit(locals)
        centroids = kmeans.cluster_centers_
        print(">> Centroids shape: ", centroids.shape)
        model.pool.init_params(centroids.T)
        print(">> NetVLAD initialized")

    # define loss function (criterion) and optimizer
    if args.loss == 'contrastive':
        criterion = ContrastiveLoss(margin=args.loss_margin).cuda()
    elif args.loss == 'triplet':
        criterion = TripletLoss(margin=args.loss_margin).cuda()
    else:
        raise(RuntimeError("Loss {} not available!".format(args.loss)))

    # parameters split into features, pool, whitening 
    # IMPORTANT: no weight decay for pooling parameter p in GeM or regional-GeM
    parameters = []
    # add feature parameters
    parameters.append({'params': model.features.parameters()})
    # add local whitening if exists
    if model.lwhiten is not None:
        parameters.append({'params': model.lwhiten.parameters()})
    # add pooling parameters (or regional whitening which is part of the pooling layer!)
    if not args.regional:
        # global, only pooling parameter p weight decay should be 0
        if args.pool == 'gem':
            parameters.append({'params': model.pool.parameters(), 'lr': args.lr*10, 'weight_decay': 0})
        elif args.pool == 'gemmp':
            parameters.append({'params': model.pool.parameters(), 'lr': args.lr*100, 'weight_decay': 0})
    else:
        # regional, pooling parameter p weight decay should be 0, 
        # and we want to add regional whitening if it is there
        if args.pool == 'gem':
            parameters.append({'params': model.pool.rpool.parameters(), 'lr': args.lr*10, 'weight_decay': 0})
        elif args.pool == 'gemmp':
            parameters.append({'params': model.pool.rpool.parameters(), 'lr': args.lr*100, 'weight_decay': 0})
        if model.pool.whiten is not None:
            parameters.append({'params': model.pool.whiten.parameters()})
    # add final whitening if exists
    if model.whiten is not None:
        parameters.append({'params': model.whiten.parameters()})

    # define optimizer
    if args.optimizer == 'sgd':
        optimizer = torch.optim.SGD(parameters, args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
    elif args.optimizer == 'adam':
        optimizer = torch.optim.Adam(parameters, args.lr, weight_decay=args.weight_decay)

    # define learning rate decay schedule
    # TODO: maybe pass as argument in future implementation?
    exp_decay = math.exp(-0.01)
    scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=exp_decay)

    # optionally resume from a checkpoint
    start_epoch = 0
    if args.resume:
        args.resume = os.path.join(args.directory, args.resume)
        if os.path.isfile(args.resume):
            # load checkpoint weights and update model and optimizer
            print(">> Loading checkpoint:\n>> '{}'".format(args.resume))
            checkpoint = torch.load(args.resume)
            start_epoch = checkpoint['epoch']
            min_loss = checkpoint['min_loss']
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            print(">>>> loaded checkpoint:\n>>>> '{}' (epoch {})"
                  .format(args.resume, checkpoint['epoch']))
            # important not to forget scheduler updating
            scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=exp_decay, last_epoch=checkpoint['epoch']-1)
        else:
            print(">> No checkpoint found at '{}'".format(args.resume))

    # Data loading code
    normalize = transforms.Normalize(mean=model.meta['mean'], std=model.meta['std'])
    transform = transforms.Compose([
        transforms.ToTensor(),
        normalize,
    ])
    train_dataset = TuplesDataset(
        name=args.training_dataset,
        mode='train',
        imsize=args.image_size,
        nnum=args.neg_num,
        qsize=args.query_size,
        poolsize=args.pool_size,
        transform=transform
    )
    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.batch_size, shuffle=True,
        num_workers=args.workers, pin_memory=True, sampler=None,
        drop_last=True, collate_fn=collate_tuples
    )
    if args.val:
        val_dataset = TuplesDataset(
            name=args.training_dataset,
            mode='val',
            imsize=args.image_size,
            nnum=args.neg_num,
            qsize=float('Inf'),
            poolsize=float('Inf'),
            transform=transform
        )
        val_loader = torch.utils.data.DataLoader(
            val_dataset, batch_size=args.batch_size, shuffle=False,
            num_workers=args.workers, pin_memory=True,
            drop_last=True, collate_fn=collate_tuples
        )

    # evaluate the network before starting
    # this might not be necessary?
    test(args.test_datasets, model)

    for epoch in range(start_epoch, args.epochs):

        # set manual seeds per epoch
        np.random.seed(epoch)
        torch.manual_seed(epoch)
        torch.cuda.manual_seed_all(epoch)

        # adjust learning rate for each epoch
        scheduler.step()
        # # debug printing to check if everything ok
        # lr_feat = optimizer.param_groups[0]['lr']
        # lr_pool = optimizer.param_groups[1]['lr']
        # print('>> Features lr: {:.2e}; Pooling lr: {:.2e}'.format(lr_feat, lr_pool))

        # train for one epoch on train set
        loss = train(train_loader, model, criterion, optimizer, epoch)

        # evaluate on validation set
        if args.val:
            with torch.no_grad():
                loss = validate(val_loader, model, criterion, epoch)

        # evaluate on test datasets every test_freq epochs
        if (epoch + 1) % args.test_freq == 0:
            with torch.no_grad():
                test(args.test_datasets, model)

        # remember best loss and save checkpoint
        is_best = loss < min_loss
        min_loss = min(loss, min_loss)

        save_checkpoint({
            'epoch': epoch + 1,
            'meta': model.meta,
            'state_dict': model.state_dict(),
            'min_loss': min_loss,
            'optimizer' : optimizer.state_dict(),
        }, is_best, args.directory)
コード例 #9
0
ファイル: eval.py プロジェクト: wzb1005/mdir
import os.path
import sys
import yaml

sys.path.append(os.path.abspath(__file__ + "/../../../../"))

import mdir
from daan.core.experiments import dict_deep_overlay

# Download necessary datasets

from cirtorch.utils.download import download_test
from cirtorch.utils.general import get_data_root

download_test(get_data_root())

# Parse arguments

scenarios = sys.argv[1:]
if len(scenarios) == 1 and not scenarios[0].endswith(".yml"):
    scenarios = ["eval.yml", "eval_%s.yml" % scenarios[0]]

# Parse input scenarios

scenario = {}
for params in scenarios:
    with open(params, 'r') as handle:
        scenario = dict_deep_overlay(scenario, yaml.safe_load(handle))
if not scenario:
    sys.stderr.write("Scenario needs to be specified\n")
コード例 #10
0
def main():
    global args, min_loss
    args = parser.parse_args()

    # check if test dataset are downloaded
    # and download if they are not
    download_train(get_data_root())
    download_test(get_data_root())

    # create export dir if it doesnt exist
    directory = "{}".format(args.training_dataset)
    directory += "_{}".format(args.arch)
    directory += "_{}".format(args.pool)
    if args.whitening:
        directory += "_whiten"
    if not args.pretrained:
        directory += "_notpretrained"
    directory += "_{}_m{:.2f}".format(args.loss, args.loss_margin)
    directory += "_{}_lr{:.1e}_wd{:.1e}".format(args.optimizer, args.lr,
                                                args.weight_decay)
    directory += "_nnum{}_qsize{}_psize{}".format(args.neg_num,
                                                  args.query_size,
                                                  args.pool_size)
    directory += "_bsize{}_imsize{}".format(args.batch_size, args.image_size)

    args.directory = os.path.join(args.directory, directory)
    print(">> Creating directory if it does not exist:\n>> '{}'".format(
        args.directory))
    if not os.path.exists(args.directory):
        os.makedirs(args.directory)

    # set cuda visible device
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # set random seeds (maybe pass as argument)
    torch.manual_seed(0)
    torch.cuda.manual_seed_all(0)
    np.random.seed(0)

    # create model
    if args.pretrained:
        print(">> Using pre-trained model '{}'".format(args.arch))
        model = init_network(model=args.arch,
                             pooling=args.pool,
                             whitening=args.whitening)
    else:
        print(">> Using model from scratch (random weights) '{}'".format(
            args.arch))
        model = init_network(model=args.arch,
                             pooling=args.pool,
                             whitening=args.whitening,
                             pretrained=False)

    # move network to gpu
    model.cuda()

    # define loss function (criterion) and optimizer
    if args.loss == 'contrastive':
        criterion = ContrastiveLoss(margin=args.loss_margin).cuda()
    else:
        raise (RuntimeError("Loss {} not available!".format(args.loss)))

    # parameters split into features and pool (no weight decay for pooling layer)
    parameters = [{
        'params': model.features.parameters()
    }, {
        'params': model.pool.parameters(),
        'lr': args.lr * 10,
        'weight_decay': 0
    }]
    if model.whiten is not None:
        parameters.append({'params': model.whiten.parameters()})

    # define optimizer
    if args.optimizer == 'sgd':
        optimizer = torch.optim.SGD(parameters,
                                    args.lr,
                                    momentum=args.momentum,
                                    weight_decay=args.weight_decay)
    elif args.optimizer == 'adam':
        optimizer = torch.optim.Adam(parameters,
                                     args.lr,
                                     weight_decay=args.weight_decay)

    # define learning rate decay schedule
    exp_decay = math.exp(-0.01)
    scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer,
                                                       gamma=exp_decay)

    # optionally resume from a checkpoint
    start_epoch = 0
    if args.resume:
        args.resume = os.path.join(args.directory, args.resume)
        if os.path.isfile(args.resume):
            print(">> Loading checkpoint:\n>> '{}'".format(args.resume))
            checkpoint = torch.load(args.resume)
            start_epoch = checkpoint['epoch']
            min_loss = checkpoint['min_loss']
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            print(">>>> loaded checkpoint:\n>>>> '{}' (epoch {})".format(
                args.resume, checkpoint['epoch']))
            scheduler = torch.optim.lr_scheduler.ExponentialLR(
                optimizer, gamma=exp_decay, last_epoch=checkpoint['epoch'] - 1)
        else:
            print(">> No checkpoint found at '{}'".format(args.resume))

    # Data loading code
    normalize = transforms.Normalize(mean=model.meta['mean'],
                                     std=model.meta['std'])
    transform = transforms.Compose([
        transforms.ToTensor(),
        normalize,
    ])
    train_dataset = TuplesDataset(name=args.training_dataset,
                                  mode='train',
                                  imsize=args.image_size,
                                  nnum=args.neg_num,
                                  qsize=args.query_size,
                                  poolsize=args.pool_size,
                                  transform=transform)
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=args.batch_size,
                                               shuffle=True,
                                               num_workers=args.workers,
                                               pin_memory=True,
                                               sampler=None,
                                               drop_last=True,
                                               collate_fn=collate_tuples)
    if args.val:
        val_dataset = TuplesDataset(name=args.training_dataset,
                                    mode='val',
                                    imsize=args.image_size,
                                    nnum=args.neg_num,
                                    qsize=float('Inf'),
                                    poolsize=float('Inf'),
                                    transform=transform)
        val_loader = torch.utils.data.DataLoader(val_dataset,
                                                 batch_size=args.batch_size,
                                                 shuffle=False,
                                                 num_workers=args.workers,
                                                 pin_memory=True,
                                                 drop_last=True,
                                                 collate_fn=collate_tuples)

    # evaluate the network before starting
    test(args.test_datasets, model)

    for epoch in range(start_epoch, args.epochs):

        # set manual seeds per epoch
        np.random.seed(epoch)
        torch.manual_seed(epoch)
        torch.cuda.manual_seed_all(epoch)

        # adjust learning rate for each epoch
        scheduler.step()
        # lr_feat = optimizer.param_groups[0]['lr']
        # lr_pool = optimizer.param_groups[1]['lr']
        # print('>> Features lr: {:.2e}; Pooling lr: {:.2e}'.format(lr_feat, lr_pool))

        # train for one epoch on train set
        loss = train(train_loader, model, criterion, optimizer, epoch)

        # evaluate on validation set
        if args.val:
            loss = validate(val_loader, model, criterion, epoch)

        # evaluate on test datasets
        test(args.test_datasets, model)

        # remember best loss and save checkpoint
        is_best = loss < min_loss
        min_loss = min(loss, min_loss)

        save_checkpoint(
            {
                'epoch': epoch + 1,
                'meta': model.meta,
                'state_dict': model.state_dict(),
                'min_loss': min_loss,
                'optimizer': optimizer.state_dict(),
            }, is_best, args.directory)
コード例 #11
0
ファイル: eval_retrieval.py プロジェクト: wzb1005/tma
def main():
    print(">> Retrieval evaluation of attacks\n")

    args = parser.parse_args()

    # check if unknown dataset
    if args.dataset not in datasets_names:
        raise ValueError('Unsupported or unknown dataset: {}!'.format(
            args.dataset))

    # check if test dataset are downloaded and download if they are not
    download_test(get_data_root())

    # setting up the visible GPU
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # parse off-the-shelf parameters
    offtheshelf = args.network_offtheshelf.split('-')
    net_params = {
        'architecture': offtheshelf[0],
        'pooling': offtheshelf[1],
        'local_whitening': False,
        'regional': False,
        'whitening': False,
        'pretrained': True
    }

    # load off-the-shelf network
    print(">> Loading off-the-shelf network: '{}'".format(
        args.network_offtheshelf))
    net = init_network(net_params)
    # print(">>>> loaded network: \n'{}'".format(net.meta_repr()))

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()

    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # evaluate on test dataset
    dataset = args.dataset
    print('>> {}: Extracting...'.format(dataset))

    # prepare config structure for the test dataset
    cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
    cfg.update({'qext_a': args.ext_attack})
    cfg.update({'dir_data_a': args.dir_attack})
    cfg.update({'dir_images_a': cfg['dir_data_a']})
    cfg.update({'qim_fname_a': config_qimname_a})

    # reduce number of queries for holidays and copydays
    if dataset.startswith('holidays') or dataset.startswith('copydays'):
        cfg['nq'] = 50
        cfg['gnd'] = cfg['gnd'][:cfg['nq']]

    images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
    qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
    qimages_a = [cfg['qim_fname_a'](cfg, i) for i in range(cfg['nq'])]

    try:
        bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]
    except:
        bbxs = None  # for holidays and copydays

    # extract descriptors and cache or load cached ones
    print('>> {}: database images...'.format(dataset))
    network_fn = args.network_offtheshelf
    if args.dir_cache is not None:
        vecs_fn = os.path.join(
            args.dir_cache,
            '{}_{}_{}_{}_vecs.pth'.format(dataset, network_fn, args.image_size,
                                          args.image_resize))
    if os.path.isfile(vecs_fn):
        vecs = torch.load(vecs_fn)
        print('>> loaded cached descriptors from {}'.format(vecs_fn))
    else:
        vecs = extract_vectors_a(net, images, args.image_size,
                                 args.image_resize, transform)
        torch.save(vecs, vecs_fn)

    print('>> {}: standard query images...'.format(dataset))
    qvecs = extract_vectors_a(net,
                              qimages,
                              args.image_size,
                              args.image_resize,
                              transform,
                              bbxs=bbxs)
    print('>> {}: attack query images...'.format(dataset))
    qvecs_a = extract_vectors_a(net, qimages_a, args.image_size,
                                args.image_resize, transform)

    print('>> {}: evaluating for image resolution {}'.format(
        dataset, args.image_resize))
    # convert to numpy
    vecs = vecs.numpy()
    qvecs = qvecs.numpy()
    qvecs_a = qvecs_a.numpy()

    qip = (qvecs * qvecs_a).sum(axis=0)
    qip_mean, qip_std = qip.mean(), qip.std()
    print('>> {}: inner product (target,attack) mean: {:.3f}, std: {:.3f}'.
          format(dataset, qip_mean, qip_std))

    # search, rank, and print
    scores = np.dot(vecs.T, qvecs)
    ranks = np.argsort(-scores, axis=0)
    maps, mprs, aps = compute_map_and_print(dataset, ranks, cfg['gnd'])

    # attack search, rank, and print
    scores = np.dot(vecs.T, qvecs_a)
    ranks = np.argsort(-scores, axis=0)
    maps_a, mprs_a, aps_a = compute_map_and_print(
        dataset + ' attack ({})'.format(args.ext_attack), ranks, cfg['gnd'])

    if dataset.startswith('roxford5k') or dataset.startswith('rparis6k'):
        r1, r2, r3 = 100 * maps[1], 100 * maps_a[1], 100 * (
            maps_a[1] - maps[1])  # medium protocol
    else:
        r1, r2, r3 = 100 * maps[0], 100 * maps_a[0], 100 * (maps_a[0] -
                                                            maps[0])

    print(
        '\n*** Summary ***\n attack: {}\n test: {}-{}-{} \n  mean ip (target,attack): {:.3f}\n  mAP: org {:.2f} att {:.2f} dif {:.2f}\n'
        .format(
            args.dir_attack.split('/')[-2], dataset, args.network_offtheshelf,
            args.image_resize, qip_mean, r1, r2, r3))

    if args.log is not None:
        with open(args.log, 'a') as f:
            f.write(
                '\n attack: {}\n test: {}-{}-{} \n  mean ip (target,attack): {:.3f}\n  mAP: org {:.2f} att {:.2f} dif {:.2f}\n\n'
                .format(
                    args.dir_attack.split('/')[-2], dataset,
                    args.network_offtheshelf, args.image_resize, qip_mean, r1,
                    r2, r3))
コード例 #12
0
def main():
    global args, min_loss
    args = parser.parse_args()

    # set cuda visible device
    os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id

    # check if test dataset are downloaded
    # and download if they are not
    download_train(get_data_root())
    download_test(get_data_root())

    # set random seeds (maybe pass as argument)
    torch.manual_seed(1234)
    torch.cuda.manual_seed_all(1234)
    np.random.seed(1234)
    random.seed(1234)
    torch.backends.cudnn.deterministic = True

    state = torch.load(args.network_path)
    model = init_network(
        model=state["meta"]["architecture"],
        pooling=state["meta"]["pooling"],
        whitening=state["meta"]["whitening"],
        mean=state["meta"]["mean"],
        std=state["meta"]["std"],
        pretrained=False,
    )
    model.load_state_dict(state["state_dict"])
    model.meta["Lw"] = state["meta"]["Lw"]
    model.cuda()

    # whitening
    Lw = model.meta["Lw"]["retrieval-SfM-120k"]["ss"]
    Lw_m = torch.from_numpy(Lw["m"]).cuda().float()
    Lw_p = torch.from_numpy(Lw["P"]).cuda().float()

    # Data loading code
    normalize = transforms.Normalize(mean=model.meta["mean"],
                                     std=model.meta["std"])
    transform = transforms.Compose([transforms.ToTensor(), normalize])
    query_dataset = MyTripletDataset(
        # imsize=args.image_size,
        imsize=(362, 362),
        random=False,
        transform=transform,
        norm=(0, 0),
        filename="base/" + args.network_path.replace("/", "_") + "_triplet",
    )
    # val_dataset.test_cluster(model)
    # return
    query_dataset.create_epoch_tuples(model)
    query_loader = torch.utils.data.DataLoader(
        query_dataset,
        batch_size=1,
        shuffle=False,
        num_workers=args.workers,
        pin_memory=True,
        worker_init_fn=lambda _: random.seed(1234),
    )

    base_dataset = ImagesFromList(
        root="",
        images=query_dataset.images,
        # imsize=query_dataset.imsize,
        imsize=(362, 362),
        transform=query_dataset.transform,
        random=False,
    )
    base_loader = torch.utils.data.DataLoader(base_dataset,
                                              batch_size=1,
                                              shuffle=False)

    # test(["oxford5k"], model)
    extract(query_loader, base_loader, model, Lw_m, Lw_p)
コード例 #13
0
def main():
    args = parser.parse_args()

    # check if test dataset are downloaded
    # and download if they are not
    download_train(get_data_root())
    download_test(get_data_root())

    # setting up the visible GPU
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # loading network from path
    if args.network_path is not None:
        print(">> Loading network:\n>>>> '{}'".format(args.network_path))
        if args.network_path in PRETRAINED:
            # pretrained networks (downloaded automatically)
            state = load_url(PRETRAINED[args.network_path],
                             model_dir=os.path.join(get_data_root(),
                                                    'networks'))
        else:
            state = torch.load(args.network_path)
        net = init_network(model=state['meta']['architecture'],
                           pooling=state['meta']['pooling'],
                           whitening=state['meta']['whitening'],
                           mean=state['meta']['mean'],
                           std=state['meta']['std'],
                           pretrained=False)
        net.load_state_dict(state['state_dict'])

        # if whitening is precomputed
        if 'Lw' in state['meta']:
            net.meta['Lw'] = state['meta']['Lw']

        print(">>>> loaded network: ")
        print(net.meta_repr())

    # loading offtheshelf network
    elif args.network_offtheshelf is not None:
        offtheshelf = args.network_offtheshelf.split('-')
        if len(offtheshelf) == 3:
            if offtheshelf[2] == 'whiten':
                offtheshelf_whiten = True
            else:
                raise (RuntimeError(
                    "Incorrect format of the off-the-shelf network. Examples: resnet101-gem | resnet101-gem-whiten"
                ))
        else:
            offtheshelf_whiten = False
        print(">> Loading off-the-shelf network:\n>>>> '{}'".format(
            args.network_offtheshelf))
        net = init_network(model=offtheshelf[0],
                           pooling=offtheshelf[1],
                           whitening=offtheshelf_whiten)
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # setting up the multi-scale parameters
    ms = [1]
    msp = 1
    if args.multiscale:
        ms = [1, 1. / math.sqrt(2), 1. / 2]
        if net.meta['pooling'] == 'gem' and net.whiten is None:
            msp = net.pool.p.data.tolist()[0]

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()
    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # compute whitening
    if args.whitening is not None:
        start = time.time()

        if 'Lw' in net.meta and args.whitening in net.meta['Lw']:

            print('>> {}: Whitening is precomputed, loading it...'.format(
                args.whitening))

            if args.multiscale:
                Lw = net.meta['Lw'][args.whitening]['ms']
            else:
                Lw = net.meta['Lw'][args.whitening]['ss']

        else:

            print('>> {}: Learning whitening...'.format(args.whitening))

            # loading db
            db_root = os.path.join(get_data_root(), 'train', args.whitening)
            ims_root = os.path.join(db_root, 'ims')
            db_fn = os.path.join(db_root,
                                 '{}-whiten.pkl'.format(args.whitening))
            with open(db_fn, 'rb') as f:
                db = pickle.load(f)
            images = [
                cid2filename(db['cids'][i], ims_root)
                for i in range(len(db['cids']))
            ]

            # extract whitening vectors
            print('>> {}: Extracting...'.format(args.whitening))
            wvecs = extract_vectors(net,
                                    images,
                                    args.image_size,
                                    transform,
                                    ms=ms,
                                    msp=msp)

            # learning whitening
            print('>> {}: Learning...'.format(args.whitening))
            wvecs = wvecs.numpy()
            m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
            Lw = {'m': m, 'P': P}

        print('>> {}: elapsed time: {}'.format(args.whitening,
                                               htime(time.time() - start)))
    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.datasets.split(',')
    for dataset in datasets:
        start = time.time()

        print('>> {}: Extracting...'.format(dataset))

        # prepare config structure for the test dataset
        cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
        images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
        qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
        bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]

        # extract database and query vectors
        print('>> {}: database images...'.format(dataset))
        vecs = extract_vectors(net,
                               images,
                               args.image_size,
                               transform,
                               ms=ms,
                               msp=msp)
        print('>> {}: query images...'.format(dataset))
        qvecs = extract_vectors(net,
                                qimages,
                                args.image_size,
                                transform,
                                bbxs=bbxs,
                                ms=ms,
                                msp=msp)

        print('>> {}: Evaluating...'.format(dataset))

        # convert to numpy
        vecs = vecs.numpy()
        qvecs = qvecs.numpy()

        # search, rank, and print
        scores = np.dot(vecs.T, qvecs)
        ranks = np.argsort(-scores, axis=0)
        compute_map_and_print(dataset, ranks, cfg['gnd'])

        if Lw is not None:
            # whiten the vectors
            vecs_lw = whitenapply(vecs, Lw['m'], Lw['P'])
            qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'])

            # search, rank, and print
            scores = np.dot(vecs_lw.T, qvecs_lw)
            ranks = np.argsort(-scores, axis=0)
            compute_map_and_print(dataset + ' + whiten', ranks, cfg['gnd'])

        print('>> {}: elapsed time: {}'.format(dataset,
                                               htime(time.time() - start)))
コード例 #14
0
def main():
    global args, min_loss
    args = parser.parse_args()
    print(args)

    # set cuda visible device
    os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id

    # check if test dataset are downloaded
    # and download if they are not
    download_train(get_data_root())
    download_test(get_data_root())

    # create export dir if it doesnt exist
    directory = "{}".format(args.target.replace("/", "_"))
    directory += "_{}".format(args.arch)
    directory += "_{}".format(args.pool)
    if args.whitening:
        directory += "_whiten"
    if not args.pretrained:
        directory += "_notpretrained"
    # directory += "_bsize{}_imsize{}".format(args.batch_size, args.image_size)
    directory += "_pretrained" if args.is_pretrained else ""
    directory += "_random" if args.is_random else ""
    directory += args.notion

    target_net = args.target[6:].replace("_", "/")
    print(target_net)
    state = torch.load(target_net)
    lw = state["meta"]["Lw"]["retrieval-SfM-120k"]["ss"]

    args.directory = os.path.join(args.directory, directory)
    print(">> Creating directory if it does not exist:\n>> '{}'".format(args.directory))
    if not os.path.exists(args.directory):
        os.makedirs(args.directory)

    # set random seeds (maybe pass as argument)
    torch.manual_seed(0)
    torch.cuda.manual_seed_all(0)
    np.random.seed(0)

    # create model
    print(">> Using pre-trained model '{}'".format(args.arch))
    model = init_network(
        model=args.arch,
        pooling=args.pool,
        whitening=args.whitening,
        pretrained=not args.is_random,
    )
    model.cuda()

    target_model = init_network(
        model=args.arch,
        pooling=args.pool,
        whitening=args.whitening,
        pretrained=not args.is_random,
    )
    target_model.load_state_dict(state["state_dict"])
    lw_m = lw["m"].copy()
    lw_p = lw["P"].copy()
    target_model.lw_m = nn.Parameter(torch.from_numpy(lw_m).float())
    target_model.lw_p = nn.Parameter(torch.from_numpy(lw_p).float())
    target_model.cuda()

    lw_m = lw["m"].copy()
    lw_p = lw["P"].copy()
    model.lw_m = nn.Parameter(torch.from_numpy(lw_m).float())
    model.lw_p = nn.Parameter(torch.from_numpy(lw_p).float())
    whiten_layer = Whiten_layer(lw["P"].shape[1], lw["P"].shape[0])
    model.white_layer = whiten_layer
    model.cuda()

    # parameters split into features and pool (no weight decay for pooling layer)
    parameters = [
        {"params": model.features.parameters()},
        {"params": model.pool.parameters(), "lr": args.lr * 10, "weight_decay": 0},
        {"params": model.white_layer.parameters(), "lr": 1e-2, "weight_decay": 5e-1},
    ]
    if model.whiten is not None:
        parameters.append({"params": model.whiten.parameters()})

    # define optimizer
    if args.optimizer == "sgd":
        optimizer = torch.optim.SGD(
            parameters, args.lr, momentum=args.momentum, weight_decay=args.weight_decay
        )
    elif args.optimizer == "adam":
        optimizer = torch.optim.Adam(
            parameters, args.lr, weight_decay=args.weight_decay
        )

    # define learning rate decay schedule
    exp_decay = math.exp(-0.01)
    scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=exp_decay)

    # optionally resume from a checkpoint
    start_epoch = 0
    # Data loading code
    normalize = transforms.Normalize(mean=model.meta["mean"], std=model.meta["std"])
    transform = transforms.Compose([transforms.ToTensor(), normalize])
    val_dataset = Distillation_dataset(
        imsize=(args.image_size, args.image_size),
        nnum=1,
        qsize=float("Inf"),
        poolsize=float("Inf"),
        transform=transform,
        filename=args.target,
        q_percent=args.q_percent,
    )
    val_loader = torch.utils.data.DataLoader(
        val_dataset,
        batch_size=10,
        shuffle=False,
        num_workers=args.workers,
        pin_memory=False,
        collate_fn=collate_tuples,
    )

    min_epoch = -1
    for epoch in range(start_epoch, args.epochs):
        if args.is_pretrained or args.is_random:
            break

        # set manual seeds per epoch
        np.random.seed(epoch)
        torch.manual_seed(epoch)
        torch.cuda.manual_seed_all(epoch)

        # adjust learning rate for each epoch
        scheduler.step()

        loss = train(val_loader, model, optimizer, epoch, target_model)
        print(loss)

        # evaluate on test datasets
        if (epoch + 1) % 1 == 0:
            with torch.no_grad():
                test(args.test_datasets, model, lw)

        # remember best loss and save checkpoint
        is_best = loss < min_loss
        min_loss = min(loss, min_loss)

        save_checkpoint(
            {
                "epoch": epoch + 1,
                "meta": model.meta,
                "state_dict": model.state_dict(),
                "min_loss": min_loss,
                "optimizer": optimizer.state_dict(),
            },
            is_best,
            args.directory,
        )
        if is_best:
            min_epoch = epoch
        # if epoch - min_epoch > 5:
        #     # break
        #     if val_dataset.phase == 1:
        #         print(bcolors.str(">>> phase 2", bcolors.OKGREEN))
        #         val_dataset.phase = 2
        #         min_epoch = epoch
        #         for group in optimizer.param_groups:
        #             group["lr"] /= 10
        #     else:
        #         break

    if args.is_pretrained or args.is_random:
        save_checkpoint(
            {
                "epoch": 0 + 1,
                "meta": model.meta,
                "state_dict": model.state_dict(),
                "min_loss": min_loss,
                "optimizer": optimizer.state_dict(),
            },
            True,
            args.directory,
        )
コード例 #15
0
def main():
    args = parser.parse_args()

    # check if test dataset are downloaded
    # and download if they are not
    download_train(get_data_root())
    download_test(get_data_root())

    # setting up the visible GPU
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # loading network from path
    if args.network_path is not None:
        net = load_network(args.network_path)

    # loading offtheshelf network
    elif args.network_offtheshelf is not None:
        net = load_offtheshelf(args.network_offtheshelf)

    # setting up the multi-scale parameters
    ms = [1]
    msp = 1
    if args.multiscale:
        ms = [1, 1./math.sqrt(2), 1./2]
        if net.meta['pooling'] == 'gem' and net.whiten is None:
            msp = net.pool.p.data.tolist()[0]

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()
    # set up the transform
    normalize = transforms.Normalize(
        mean=net.meta['mean'],
        std=net.meta['std']
    )
    transform = transforms.Compose([
        transforms.ToTensor(),
        normalize
    ])

    # compute whitening
    if args.whitening is not None:
        start = time.time()

        if 'Lw' in net.meta and args.whitening in net.meta['Lw']:

            print('>> {}: Whitening is precomputed, loading it...'.format(args.whitening))

            if args.multiscale:
                Lw = net.meta['Lw'][args.whitening]['ms']
            else:
                Lw = net.meta['Lw'][args.whitening]['ss']

        else:

            print('>> {}: Learning whitening...'.format(args.whitening))

            if args.whitening == "scores":
                # special logic for scores database
                from score_retrieval.exports import (
                    db,
                    train_images as images,
                )

            else:
                # loading db
                db_root = os.path.join(get_data_root(), 'train', args.test_whiten)
                ims_root = os.path.join(db_root, 'ims')
                db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.test_whiten))
                with open(db_fn, 'rb') as f:
                    db = pickle.load(f)
                images = [cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids']))]

            # extract whitening vectors
            print('>> {}: Extracting...'.format(args.whitening))
            wvecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp)

            # learning whitening
            print('>> {}: Learning...'.format(args.whitening))
            wvecs = wvecs.numpy()
            m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
            Lw = {'m': m, 'P': P}

        print('>> {}: elapsed time: {}'.format(args.whitening, htime(time.time()-start)))
    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.datasets.split(',')
    for dataset in datasets:
        start = time.time()

        print('>> {}: Extracting...'.format(dataset))

        if dataset == "scores":
            # Special added logic to handle loading our score dataset
            from score_retrieval.exports import (
                images,
                qimages,
                gnd,
            )

            print('>> {}: database images...'.format(dataset))
            vecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp)
            print('>> {}: query images...'.format(dataset))
            qvecs = extract_vectors(net, qimages, args.image_size, transform, ms=ms, msp=msp)

        else:
            # extract ground truth
            cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
            gnd = cfg['gnd']

            # prepare config structure for the test dataset
            images = [cfg['im_fname'](cfg,i) for i in range(cfg['n'])]
            qimages = [cfg['qim_fname'](cfg,i) for i in range(cfg['nq'])]
            bbxs = [tuple(gnd[i]['bbx']) for i in range(cfg['nq'])]

            # extract database and query vectors
            print('>> {}: database images...'.format(dataset))
            vecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp)
            print('>> {}: query images...'.format(dataset))
            qvecs = extract_vectors(net, qimages, args.image_size, transform, bbxs=bbxs, ms=ms, msp=msp)

        # validation
        print(">> {}: gnd stats: {}, {}, {}".format(
            dataset,
            len(gnd),
            [len(x["ok"]) for x in gnd[10:]],
            [len(x["junk"]) for x in gnd[10:]],
        ))
        print(">> {}: image stats: {}, {}".format(dataset, len(images), len(qimages)))
        assert len(gnd) == len(qimages), (len(gnd), len(qimages))

        print('>> {}: Evaluating...'.format(dataset))

        # convert to numpy
        vecs = vecs.numpy()
        qvecs = qvecs.numpy()
        print(">> {}: qvecs.shape: {}".format(dataset, qvecs.shape))

        # search, rank, and print
        scores = np.dot(vecs.T, qvecs)
        ranks = np.argsort(-scores, axis=0)
        print(">> {}: ranks (shape {}) head: {}".format(dataset, ranks.shape, ranks[10:,10:]))
        print(">> {}: gnd head: {}".format(dataset, gnd[5:]))

        # Compute and print metrics
        compute_acc(ranks, gnd, dataset)
        compute_mrr(ranks, gnd, dataset)
        compute_map_and_print(dataset, ranks, gnd)

        if Lw is not None:
            # whiten the vectors
            vecs_lw  = whitenapply(vecs, Lw['m'], Lw['P'])
            qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'])

            # search, rank, and print
            scores = np.dot(vecs_lw.T, qvecs_lw)
            ranks = np.argsort(-scores, axis=0)
            compute_acc(ranks, gnd, dataset + " + whiten")
            compute_mrr(ranks, gnd, dataset + " + whiten")
            compute_map_and_print(dataset + " + whiten", ranks, gnd)

        print('>> {}: elapsed time: {}'.format(dataset, htime(time.time()-start)))
コード例 #16
0
ファイル: test.py プロジェクト: leejang/img_ret_w_sc_imf
def main():
    args = parser.parse_args()

    # check if there are unknown datasets
    for dataset in args.datasets.split(','):
        if dataset not in datasets_names:
            raise ValueError(
                'Unsupported or unknown dataset: {}!'.format(dataset))

    # check if test dataset are downloaded
    # and download if they are not
    #download_train(get_data_root())
    download_test(get_data_root())

    # setting up the visible GPU
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # loading network from path
    if args.network_path is not None:

        print(">> Loading network:\n>>>> '{}'".format(args.network_path))
        if args.network_path in PRETRAINED:
            # pretrained networks (downloaded automatically)
            state = load_url(PRETRAINED[args.network_path],
                             model_dir=os.path.join(get_data_root(),
                                                    'networks'))
        else:
            # fine-tuned network from path
            state = torch.load(args.network_path)

        # parsing net params from meta
        # architecture, pooling, mean, std required
        # the rest has default values, in case that is doesnt exist
        net_params = {}
        net_params['architecture'] = state['meta']['architecture']
        net_params['pooling'] = state['meta']['pooling']
        net_params['local_whitening'] = state['meta'].get(
            'local_whitening', False)
        net_params['regional'] = state['meta'].get('regional', False)
        net_params['whitening'] = state['meta'].get('whitening', False)
        net_params['mean'] = state['meta']['mean']
        net_params['std'] = state['meta']['std']
        net_params['pretrained'] = False

        # load network
        net = init_network(net_params)
        net.load_state_dict(state['state_dict'])

        # if whitening is precomputed
        if 'Lw' in state['meta']:
            net.meta['Lw'] = state['meta']['Lw']

        print(">>>> loaded network: ")
        print(net.meta_repr())

    # loading offtheshelf network
    elif args.network_offtheshelf is not None:

        # parse off-the-shelf parameters
        offtheshelf = args.network_offtheshelf.split('-')
        net_params = {}
        net_params['architecture'] = offtheshelf[0]
        net_params['pooling'] = offtheshelf[1]
        net_params['local_whitening'] = 'lwhiten' in offtheshelf[2:]
        net_params['regional'] = 'reg' in offtheshelf[2:]
        net_params['whitening'] = 'whiten' in offtheshelf[2:]
        net_params['pretrained'] = True

        # load off-the-shelf network
        print(">> Loading off-the-shelf network:\n>>>> '{}'".format(
            args.network_offtheshelf))
        net = init_network(net_params)
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # setting up the multi-scale parameters
    ms = list(eval(args.multiscale))
    if len(ms) > 1 and net.meta['pooling'] == 'gem' and not net.meta[
            'regional'] and not net.meta['whitening']:
        msp = net.pool.p.item()
        print(">> Set-up multiscale:")
        print(">>>> ms: {}".format(ms))
        print(">>>> msp: {}".format(msp))
    else:
        msp = 1

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()

    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # compute whitening
    if args.whitening is not None:
        start = time.time()

        if 'Lw' in net.meta and args.whitening in net.meta['Lw']:

            print('>> {}: Whitening is precomputed, loading it...'.format(
                args.whitening))

            if len(ms) > 1:
                Lw = net.meta['Lw'][args.whitening]['ms']
            else:
                Lw = net.meta['Lw'][args.whitening]['ss']

        else:

            # if we evaluate networks from path we should save/load whitening
            # not to compute it every time
            if args.network_path is not None:
                whiten_fn = args.network_path + '_{}_whiten'.format(
                    args.whitening)
                if len(ms) > 1:
                    whiten_fn += '_ms'
                whiten_fn += '.pth'
            else:
                whiten_fn = None

            if whiten_fn is not None and os.path.isfile(whiten_fn):
                print('>> {}: Whitening is precomputed, loading it...'.format(
                    args.whitening))
                Lw = torch.load(whiten_fn)

            else:
                print('>> {}: Learning whitening...'.format(args.whitening))

                # loading db
                db_root = os.path.join(get_data_root(), 'train',
                                       args.whitening)
                ims_root = os.path.join(db_root, 'ims')
                db_fn = os.path.join(db_root,
                                     '{}-whiten.pkl'.format(args.whitening))
                with open(db_fn, 'rb') as f:
                    db = pickle.load(f)
                images = [
                    cid2filename(db['cids'][i], ims_root)
                    for i in range(len(db['cids']))
                ]

                # extract whitening vectors
                print('>> {}: Extracting...'.format(args.whitening))
                wvecs = extract_vectors(net,
                                        images,
                                        args.image_size,
                                        transform,
                                        ms=ms,
                                        msp=msp)

                # learning whitening
                print('>> {}: Learning...'.format(args.whitening))
                wvecs = wvecs.numpy()
                m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
                Lw = {'m': m, 'P': P}

                # saving whitening if whiten_fn exists
                if whiten_fn is not None:
                    print('>> {}: Saving to {}...'.format(
                        args.whitening, whiten_fn))
                    torch.save(Lw, whiten_fn)

        print('>> {}: elapsed time: {}'.format(args.whitening,
                                               htime(time.time() - start)))

    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.datasets.split(',')
    for dataset in datasets:
        start = time.time()
        """
        print('>> {}: Extracting...'.format(dataset))

        # prepare config structure for the test dataset
        cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
        images = [cfg['im_fname'](cfg,i) for i in range(cfg['n'])]
        qimages = [cfg['qim_fname'](cfg,i) for i in range(cfg['nq'])]
        try:
            bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]
        except:
            bbxs = None  # for holidaysmanrot and copydays

        # extract database and query vectors
        print('>> {}: database images...'.format(dataset))
        vecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp)
        print('>> {}: query images...'.format(dataset))
        qvecs = extract_vectors(net, qimages, args.image_size, transform, bbxs=bbxs, ms=ms, msp=msp)
        
        print('>> {}: Evaluating...'.format(dataset))

        # convert to numpy
        vecs = vecs.numpy()
        qvecs = qvecs.numpy()

        print (vecs.shape)
        print (qvecs.shape)

        # search, rank, and print
        scores = np.dot(vecs.T, qvecs)
        print (scores.shape)

        # to save scores (single query)
        # oxford
        #f = 'oxf_single.npy'
        # paris
        #f = 'par_single.npy'
        # roxford
        #f = 'roxf_single.npy'
        # rparis
        f = 'rpar_single.npy'

        ranks = np.argsort(-scores, axis=0)
        compute_map_and_print(dataset, ranks, cfg['gnd'])
    
        if Lw is not None:
            # whiten the vectors
            vecs_lw  = whitenapply(vecs, Lw['m'], Lw['P'])
            qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'])

            # search, rank, and print
            scores = np.dot(vecs_lw.T, qvecs_lw)
            # save
            np.save(f, scores)

            ranks = np.argsort(-scores, axis=0)
            compute_map_and_print(dataset + ' + whiten', ranks, cfg['gnd'])
        """

        ############################################################
        # Test
        # prepare config structure for the test dataset
        cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
        images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
        qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]

        print(qimages)

        # to load scores
        # oxford
        #f = 'oxf_single.npy'
        #f = 'oxf_mq_avg.npy'
        #f = 'oxf_mq_max.npy'
        #f = 'oxf_sc_imf.npy'

        # paris
        #f = 'par_single.npy'
        #f = 'par_mq_avg.npy'
        #f = 'par_mq_max.npy'
        f = 'par_sc_imf.npy'

        # roxford
        #f = 'roxf_single.npy'
        #f = 'roxf_mq_avg.npy'
        #f = 'roxf_mq_max.npy'
        #f = 'roxf_sc_imf.npy'

        # rparis
        #f = 'rpar_single.npy'
        #f = 'rpar_mq_avg.npy'
        #f = 'rpar_mq_max.npy'
        #f = 'rpar_sc_imf.npy'

        # load
        scores = np.load(f)
        ranks = np.argsort(-scores, axis=0)
        compute_map_and_print(dataset + ' + whiten', ranks, cfg['gnd'])

        print('>> {}: elapsed time: {}'.format(dataset,
                                               htime(time.time() - start)))
コード例 #17
0
def main():
    global args, min_loss, global_step
    args = parser.parse_args()
    
    if args.wandb:
        # initialize wandb
        wandb.init(
            project='cnnimageretrieval-pytorch', name=args.directory,
            entity='ronaldseoh')
        
        # save args provided for this experiment to wandb
        wandb.config.update(args)

    # manually check if there are unknown test datasets
    for dataset in args.test_datasets.split(','):
        if dataset not in test_datasets_names:
            raise ValueError('Unsupported or unknown test dataset: {}!'.format(dataset))

    # check if test dataset are downloaded
    # and download if they are not
    download_train(get_data_root())
    download_test(get_data_root())

    # create export dir if it doesnt exist
    directory = "{}".format(args.training_dataset)
    directory += "_{}".format(args.arch)
    directory += "_{}".format(args.pool)
    if args.local_whitening:
        directory += "_lwhiten"
    if args.regional:
        directory += "_r"
    if args.whitening:
        directory += "_whiten"
    if not args.pretrained:
        directory += "_notpretrained"
    directory += "_{}_m{:.2f}".format(args.loss, args.loss_margin)
    directory += "_{}_lr{:.1e}_wd{:.1e}".format(args.optimizer, args.lr, args.weight_decay)
    directory += "_nnum{}_qsize{}_psize{}".format(args.neg_num, args.query_size, args.pool_size)
    directory += "_bsize{}_uevery{}_imsize{}".format(args.batch_size, args.update_every, args.image_size)

    args.directory = os.path.join(args.directory, directory)
    print(">> Creating directory if it does not exist:\n>> '{}'".format(args.directory))
    if not os.path.exists(args.directory):
        os.makedirs(args.directory)

    # set cuda visible device
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id
    
    # set random seeds
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed_all(args.seed)
    np.random.seed(args.seed)

    # initialize model
    if args.pretrained:
        print(">> Using pre-trained model '{}'".format(args.arch))
    else:
        print(">> Using model from scratch (random weights) '{}'".format(args.arch))
    model_params = {}
    model_params['architecture'] = args.arch
    model_params['pooling'] = args.pool
    model_params['local_whitening'] = args.local_whitening
    model_params['regional'] = args.regional
    model_params['whitening'] = args.whitening
    # model_params['mean'] = ...  # will use default
    # model_params['std'] = ...  # will use default
    model_params['pretrained'] = args.pretrained
    model = init_network(model_params)

    # move network to gpu
    model.cuda()

    # define loss function (criterion) and optimizer
    if args.loss == 'contrastive':
        criterion = ContrastiveLoss(margin=args.loss_margin).cuda()
    elif args.loss == 'triplet':
        criterion = TripletLoss(margin=args.loss_margin).cuda()
    else:
        raise(RuntimeError("Loss {} not available!".format(args.loss)))

    # parameters split into features, pool, whitening 
    # IMPORTANT: no weight decay for pooling parameter p in GeM or regional-GeM
    parameters = []
    # add feature parameters
    parameters.append({'params': model.features.parameters()})
    # add local whitening if exists
    if model.lwhiten is not None:
        parameters.append({'params': model.lwhiten.parameters()})
    # add pooling parameters (or regional whitening which is part of the pooling layer!)
    if not args.regional:
        # global, only pooling parameter p weight decay should be 0
        if args.pool == 'gem':
            parameters.append({'params': model.pool.parameters(), 'lr': args.lr*10, 'weight_decay': 0})
        elif args.pool == 'gemmp':
            parameters.append({'params': model.pool.parameters(), 'lr': args.lr*100, 'weight_decay': 0})
    else:
        # regional, pooling parameter p weight decay should be 0, 
        # and we want to add regional whitening if it is there
        if args.pool == 'gem':
            parameters.append({'params': model.pool.rpool.parameters(), 'lr': args.lr*10, 'weight_decay': 0})
        elif args.pool == 'gemmp':
            parameters.append({'params': model.pool.rpool.parameters(), 'lr': args.lr*100, 'weight_decay': 0})
        if model.pool.whiten is not None:
            parameters.append({'params': model.pool.whiten.parameters()})
    # add final whitening if exists
    if model.whiten is not None:
        parameters.append({'params': model.whiten.parameters()})

    # define optimizer
    if args.optimizer == 'sgd':
        optimizer = torch.optim.SGD(parameters, args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
    elif args.optimizer == 'adam':
        optimizer = torch.optim.Adam(parameters, args.lr, weight_decay=args.weight_decay)

    # define learning rate decay schedule
    # TODO: maybe pass as argument in future implementation?
    exp_decay = math.exp(-0.01)
    scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=exp_decay)

    # optionally resume from a checkpoint
    start_epoch = 0
    if args.resume:
        args.resume = os.path.join(args.directory, args.resume)
        if os.path.isfile(args.resume):
            # load checkpoint weights and update model and optimizer
            print(">> Loading checkpoint:\n>> '{}'".format(args.resume))
            checkpoint = torch.load(args.resume)
            start_epoch = checkpoint['epoch']
            min_loss = checkpoint['min_loss']
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            print(">>>> loaded checkpoint:\n>>>> '{}' (epoch {})"
                  .format(args.resume, checkpoint['epoch']))
            # important not to forget scheduler updating
            scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=exp_decay, last_epoch=checkpoint['epoch']-1)
        else:
            print(">> No checkpoint found at '{}'".format(args.resume))

    # Data loading code
    normalize = transforms.Normalize(mean=model.meta['mean'], std=model.meta['std'])
    transform = transforms.Compose([
        transforms.ToTensor(),
        normalize,
    ])
    
    if args.query_size == -1:
        train_query_size = float('Inf')
    else:
        train_query_size = args.query_size
        
    if args.pool_size == -1:
        train_pool_size = float('Inf')
    else:
        train_pool_size = args.pool_size
    
    train_dataset = TuplesDataset(
        name=args.training_dataset,
        mode='train',
        imsize=args.image_size,
        nnum=args.neg_num,
        qsize=train_query_size,
        poolsize=train_pool_size,
        transform=transform,
        store_nidxs_others_up_to=args.store_nidxs_others_up_to,
        store_nidxs_others_order_by=args.store_nidxs_others_order_by,
        totally_random_nidxs=args.totally_random_nidxs,
        totally_random_nidxs_others=args.totally_random_nidxs_others,
        dense_refresh_batch_and_nearby=args.dense_refresh_batch_and_nearby,
        dense_refresh_batch_multi_hop=args.dense_refresh_batch_multi_hop,
        dense_refresh_batch_random=args.dense_refresh_batch_random,
    )

    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.batch_size, shuffle=True,
        num_workers=0, pin_memory=True, sampler=None,
        drop_last=True, collate_fn=collate_tuples
    )
    if args.val:
        val_dataset = TuplesDataset(
            name=args.training_dataset,
            mode='val',
            imsize=args.image_size,
            nnum=args.neg_num,
            qsize=float('Inf'),
            poolsize=float('Inf'),
            transform=transform
        )
        val_loader = torch.utils.data.DataLoader(
            val_dataset, batch_size=args.batch_size, shuffle=False,
            num_workers=args.workers, pin_memory=True,
            drop_last=True, collate_fn=collate_tuples
        )

    if args.wandb:
        # Start watching 'model' from wandb
        wandb.watch(model)

    # evaluate the network before starting
    # this might not be necessary?
    test(args.test_datasets, model, wandb_enabled=args.wandb, epoch=-1)
    
    indexes_to_refresh = []

    for epoch in range(start_epoch, args.epochs):

        # set manual seeds per epoch
        random.seed(args.seed + epoch)
        np.random.seed(args.seed + epoch)
        torch.manual_seed(args.seed + epoch)
        torch.cuda.manual_seed_all(args.seed + epoch)

        # train for one epoch on train set
        loss, indexes_to_refresh = train(train_loader, model, criterion, optimizer, epoch, indexes_to_refresh)
        
        if args.wandb:
            wandb.log({"loss_avg": loss, "epoch": epoch, "global_step": global_step}) ## This is average loss
        
        # adjust learning rate for each epoch
        scheduler.step()

        # # debug printing to check if everything ok
        # lr_feat = optimizer.param_groups[0]['lr']
        # lr_pool = optimizer.param_groups[1]['lr']
        # print('>> Features lr: {:.2e}; Pooling lr: {:.2e}'.format(lr_feat, lr_pool))

        # evaluate on validation set
        if args.val:
            with torch.no_grad():
                loss = validate(val_loader, model, criterion, epoch)
                
                if args.wandb:
                    wandb.log({"loss_validation": loss, "epoch": epoch, "global_step": global_step})

        # evaluate on test datasets every test_freq epochs
        if (epoch + 1) % args.test_freq == 0:
            with torch.no_grad():
                test(args.test_datasets, model, wandb_enabled=args.wandb, epoch=epoch)

        # remember best loss and save checkpoint
        is_best = loss < min_loss
        min_loss = min(loss, min_loss)
        
        if is_best:
            print("Epoch", str(epoch + 1), "lower loss:", min_loss)

        save_checkpoint({
            'epoch': epoch + 1,
            'meta': model.meta,
            'state_dict': model.state_dict(),
            'min_loss': min_loss,
            'optimizer' : optimizer.state_dict(),
        }, is_best, args.directory)
        
    # calculate avg_neg_distance and avg_pos_distance for one last time
    print("Training finished. Calculating the final avg_{neg,pos}_distance...")

    avg_neg_distance, _ = train_loader.dataset.create_epoch_tuples(
        model,
        batch_members=[],
        refresh_query_selection=False,
        refresh_query_vectors=False,
        refresh_negative_pool=False,
        refresh_negative_pool_vectors=False,
        refresh_nidxs=False,
        refresh_nidxs_vectors=False)
        
    if args.wandb:
        wandb.log({"avg_neg_distance": avg_neg_distance, 'epoch': epoch, "global_step": global_step})

    if args.calculate_positive_distance:
        avg_pos_distance = train_loader.dataset.calculate_average_positive_distance()
        
        if args.wandb:
            wandb.log({"avg_pos_distance": avg_pos_distance, 'epoch': epoch, "global_step": global_step})
コード例 #18
0
def main():
    global args, min_loss
    args = parser.parse_args()

    print(args)

    # manually check if there are unknown test datasets
    for dataset in args.test_datasets.split(','):
        if dataset not in test_datasets_names:
            raise ValueError(
                'Unsupported or unknown test dataset: {}!'.format(dataset))

    # check if test dataset are downloaded
    # and download if they are not
    download_train(get_data_root())
    download_test(get_data_root())

    # create export dir if it doesnt exist
    directory = "{}".format(args.training_dataset)
    directory += "_{}".format(args.arch)
    directory += "_{}".format(args.pool)
    if args.local_whitening:
        directory += "_lwhiten"
    if args.regional:
        directory += "_r"
    if args.whitening:
        directory += "_whiten"
    if not args.pretrained:
        directory += "_notpretrained"
    directory += "_{}_m{:.2f}".format(args.loss, args.loss_margin)
    directory += "_{}_lr{:.1e}_wd{:.1e}".format(args.optimizer, args.lr,
                                                args.weight_decay)
    directory += "_nnum{}_qsize{}_psize{}".format(args.neg_num,
                                                  args.query_size,
                                                  args.pool_size)
    directory += "_bsize{}_uevery{}_imsize{}".format(args.batch_size,
                                                     args.update_every,
                                                     args.image_size)

    args.directory = os.path.join(args.directory, directory)
    print(">> Creating directory if it does not exist:\n>> '{}'".format(
        args.directory))
    if not os.path.exists(args.directory):
        os.makedirs(args.directory)

    # set cuda visible device
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # set random seeds
    # TODO: maybe pass as argument in future implementation?
    torch.manual_seed(0)
    torch.cuda.manual_seed_all(0)
    np.random.seed(0)

    # initialize model
    if args.pretrained:
        print(">> Using pre-trained model '{}'".format(args.arch))
    else:
        print(">> Using model from scratch (random weights) '{}'".format(
            args.arch))
    model_params = {}
    model_params['architecture'] = args.arch
    model_params['pooling'] = args.pool
    model_params['local_whitening'] = args.local_whitening
    model_params['regional'] = args.regional
    model_params['whitening'] = args.whitening
    model_params['mean'] = args.mean
    model_params['std'] = args.std
    model_params['pretrained'] = args.pretrained
    model = init_network(model_params)

    # move network to gpu
    model.cuda()

    print(model)
    summary(model, (3, 224, 224))

    # define loss function (criterion) and optimizer
    if args.loss == 'contrastive':
        criterion = ContrastiveLoss(margin=args.loss_margin).cuda()
    elif args.loss == 'triplet':
        criterion = TripletLoss(margin=args.loss_margin).cuda()
    else:
        raise (RuntimeError("Loss {} not available!".format(args.loss)))

    # parameters split into features, pool, whitening
    # IMPORTANT: no weight decay for pooling parameter p in GeM or regional-GeM
    parameters = []
    # add feature parameters
    parameters.append({'params': model.features.parameters()})
    # add local whitening if exists
    if model.lwhiten is not None:
        parameters.append({'params': model.lwhiten.parameters()})
    # add pooling parameters (or regional whitening which is part of the pooling layer!)
    if not args.regional:
        # global, only pooling parameter p weight decay should be 0
        if args.pool == 'gem':
            parameters.append({
                'params': model.pool.parameters(),
                'lr': args.lr * 10,
                'weight_decay': 0
            })
        elif args.pool == 'gemmp':
            parameters.append({
                'params': model.pool.parameters(),
                'lr': args.lr * 100,
                'weight_decay': 0
            })
    else:
        # regional, pooling parameter p weight decay should be 0,
        # and we want to add regional whitening if it is there
        if args.pool == 'gem':
            parameters.append({
                'params': model.pool.rpool.parameters(),
                'lr': args.lr * 10,
                'weight_decay': 0
            })
        elif args.pool == 'gemmp':
            parameters.append({
                'params': model.pool.rpool.parameters(),
                'lr': args.lr * 100,
                'weight_decay': 0
            })
        if model.pool.whiten is not None:
            parameters.append({'params': model.pool.whiten.parameters()})
    # add final whitening if exists
    if model.whiten is not None:
        parameters.append({'params': model.whiten.parameters()})

    # define optimizer
    if args.optimizer == 'sgd':
        optimizer = torch.optim.SGD(parameters,
                                    args.lr,
                                    momentum=args.momentum,
                                    weight_decay=args.weight_decay)
    elif args.optimizer == 'adam':
        optimizer = torch.optim.Adam(parameters,
                                     args.lr,
                                     weight_decay=args.weight_decay)

    # define learning rate decay schedule
    # TODO: maybe pass as argument in future implementation?
    exp_decay = math.exp(-0.01)
    scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer,
                                                       gamma=exp_decay)

    # optionally resume from a checkpoint
    start_epoch = 0
    if args.resume:
        args.resume = os.path.join(args.directory, args.resume)
        if os.path.isfile(args.resume):
            # load checkpoint weights and update model and optimizer
            print(">> Loading checkpoint:\n>> '{}'".format(args.resume))
            checkpoint = torch.load(args.resume)
            start_epoch = checkpoint['epoch']
            min_loss = checkpoint['min_loss']
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            print(">>>> loaded checkpoint:\n>>>> '{}' (epoch {})".format(
                args.resume, checkpoint['epoch']))
            # important not to forget scheduler updating
            scheduler = torch.optim.lr_scheduler.ExponentialLR(
                optimizer, gamma=exp_decay, last_epoch=checkpoint['epoch'] - 1)
        else:
            print(">> No checkpoint found at '{}'".format(args.resume))

    # Data loading code
    normalize = transforms.Normalize(mean=model.meta['mean'],
                                     std=model.meta['std'])
    transform = transforms.Compose([
        transforms.ToTensor(),
        normalize,
    ])
    train_dataset = TuplesDataset(name=args.training_dataset,
                                  mode='train',
                                  imsize=args.image_size,
                                  nnum=args.neg_num,
                                  qsize=args.query_size,
                                  poolsize=args.pool_size,
                                  transform=transform)
    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=args.batch_size,
                                               shuffle=True,
                                               num_workers=args.workers,
                                               pin_memory=True,
                                               sampler=None,
                                               drop_last=True,
                                               collate_fn=collate_tuples)
    if args.val:
        val_dataset = TuplesDataset(name=args.training_dataset,
                                    mode='val',
                                    imsize=args.image_size,
                                    nnum=args.neg_num,
                                    qsize=float('Inf'),
                                    poolsize=float('Inf'),
                                    transform=transform)
        val_loader = torch.utils.data.DataLoader(val_dataset,
                                                 batch_size=args.batch_size,
                                                 shuffle=False,
                                                 num_workers=args.workers,
                                                 pin_memory=True,
                                                 drop_last=True,
                                                 collate_fn=collate_tuples)

    # uncomment to evaluate the network before starting
    # test(args.test_datasets, model)

    for epoch in range(start_epoch, args.epochs):

        # set manual seeds per epoch
        np.random.seed(epoch)
        torch.manual_seed(epoch)
        torch.cuda.manual_seed_all(epoch)

        # adjust learning rate for each epoch
        scheduler.step()
        # # debug printing to check if everything ok
        # lr_feat = optimizer.param_groups[0]['lr']
        # lr_pool = optimizer.param_groups[1]['lr']
        # print('>> Features lr: {:.2e}; Pooling lr: {:.2e}'.format(lr_feat, lr_pool))

        # train for one epoch on train set
        # loss = train(train_loader, model, criterion, optimizer, epoch)
        loss = 999.

        # evaluate on validation set
        if args.val:
            with torch.no_grad():
                loss = validate(val_loader, model, criterion, epoch)

        # evaluate on test datasets every test_freq epochs
        if (epoch + 1) % args.test_freq == 0:
            with torch.no_grad():
                test(args.test_datasets, model)

        # remember best loss and save checkpoint
        is_best = loss < min_loss
        min_loss = min(loss, min_loss)

        save_checkpoint(
            {
                'epoch': epoch + 1,
                'meta': model.meta,
                'state_dict': model.state_dict(),
                'min_loss': min_loss,
                'optimizer': optimizer.state_dict(),
            }, is_best, args.directory)