コード例 #1
0
def test_metrics_to_dict():
    G = mock.mock_graph()
    G = graphs.nX_simple_geoms(G)
    # create a network layer and run some metrics
    N = networks.Network_Layer_From_nX(G, distances=[500, 1000])

    # check with no metrics
    metrics_dict = N.metrics_to_dict()
    dict_check(metrics_dict, N)

    # check with centrality metrics
    N.compute_centrality(measures=['node_harmonic'])
    metrics_dict = N.metrics_to_dict()
    dict_check(metrics_dict, N)

    # check with data metrics
    data_dict = mock.mock_data_dict(G)
    landuse_labels = mock.mock_categorical_data(len(data_dict))
    numerical_data = mock.mock_numerical_data(len(data_dict))
    # TODO:
    '''
    D = layers.Data_Layer_From_Dict(data_dict)
    D.assign_to_network(N, max_dist=400)
    D.compute_aggregated(landuse_labels,
                         mixed_use_keys=['hill', 'shannon'],
                         accessibility_keys=['a', 'c'],
                         qs=[0, 1],
                         stats_keys=['boo'],
                         stats_data_arrs=numerical_data)
    '''
    metrics_dict = N.metrics_to_dict()
    dict_check(metrics_dict, N)
コード例 #2
0
ファイル: test_layers.py プロジェクト: KalipheGTU/cityseer
def test_compute_stats_single():
    for G, distances, betas in network_generator():
        data_dict = mock.mock_data_dict(G)
        numeric_data = mock.mock_numerical_data(len(data_dict), num_arrs=1)
        # easy version
        N_easy = networks.Network_Layer_From_nX(G, distances)
        D_easy = layers.Data_Layer_From_Dict(data_dict)
        D_easy.assign_to_network(N_easy, max_dist=500)
        D_easy.compute_stats_single('boo', numeric_data[0])
        # custom version
        N_full = networks.Network_Layer_From_nX(G, distances)
        D_full = layers.Data_Layer_From_Dict(data_dict)
        D_full.assign_to_network(N_full, max_dist=500)
        D_full.compute_aggregated(stats_keys=['boo'],
                                  stats_data_arrs=numeric_data)
        # compare
        for n_label in ['boo']:
            for s_label in [
                    'max', 'min', 'mean', 'mean_weighted', 'variance',
                    'variance_weighted'
            ]:
                for dist in distances:
                    assert np.allclose(
                        N_easy.metrics['stats'][n_label][s_label][dist],
                        N_full.metrics['stats'][n_label][s_label][dist],
                        equal_nan=True,
                        atol=0.001,
                        rtol=0)
        # check that non-single dimension arrays are caught
        with pytest.raises(ValueError):
            D_easy.compute_stats_single('boo', numeric_data)
コード例 #3
0
ファイル: test_layers.py プロジェクト: KalipheGTU/cityseer
def test_compute_stats_multiple():
    for G, distances, betas in network_generator():
        data_dict = mock.mock_data_dict(G)
        numeric_data = mock.mock_numerical_data(len(data_dict), num_arrs=2)
        # easy version
        N_easy = networks.Network_Layer_From_nX(G, distances)
        D_easy = layers.Data_Layer_From_Dict(data_dict)
        D_easy.assign_to_network(N_easy, max_dist=500)
        D_easy.compute_stats_multiple(['boo', 'baa'], numeric_data)
        # custom version
        N_full = networks.Network_Layer_From_nX(G, distances)
        D_full = layers.Data_Layer_From_Dict(data_dict)
        D_full.assign_to_network(N_full, max_dist=500)
        D_full.compute_aggregated(stats_keys=['boo', 'baa'],
                                  stats_data_arrs=numeric_data)
        # compare
        for n_label in ['boo', 'baa']:
            for s_label in [
                    'max', 'min', 'mean', 'mean_weighted', 'variance',
                    'variance_weighted'
            ]:
                for dist in distances:
                    assert np.allclose(
                        N_easy.metrics['stats'][n_label][s_label][dist],
                        N_full.metrics['stats'][n_label][s_label][dist],
                        equal_nan=True,
                        atol=0.001,
                        rtol=0)
コード例 #4
0
ファイル: test_checks.py プロジェクト: KalipheGTU/cityseer
def test_check_numerical_data():
    mock_numerical = mock.mock_numerical_data(50)

    # check for malformed data
    # difficult to catch int arrays without running into numba type checking errors
    # single dimension
    with pytest.raises(ValueError):
        corrupt_numerical = mock_numerical[0]
        assert corrupt_numerical.ndim == 1
        checks.check_numerical_data(corrupt_numerical)
    # catch infinites
    with pytest.raises(ValueError):
        mock_numerical[0][0] = np.inf
        checks.check_numerical_data(mock_numerical)
コード例 #5
0
ファイル: test_layers.py プロジェクト: KalipheGTU/cityseer
def test_compute_aggregated_B():
    '''
    Test stats component
    '''
    G = mock.mock_graph()
    G = graphs.nX_simple_geoms(G)
    betas = np.array([-0.01, -0.005])
    distances = networks.distance_from_beta(betas)
    # network layer
    N = networks.Network_Layer_From_nX(G, distances)
    node_map = N._node_data
    edge_map = N._edge_data
    node_edge_map = N._node_edge_map
    # data layer
    data_dict = mock.mock_data_dict(G)
    qs = np.array([0, 1, 2])
    D = layers.Data_Layer_From_Dict(data_dict)
    # check single metrics independently against underlying for some use-cases, e.g. hill, non-hill, accessibility...
    D.assign_to_network(N, max_dist=500)

    # generate some mock landuse data
    mock_numeric = mock.mock_numerical_data(len(data_dict), num_arrs=2)

    # generate stats
    D.compute_aggregated(stats_keys=['boo', 'baa'],
                         stats_data_arrs=mock_numeric)

    # test against underlying method
    data_map = D._data
    mu_data_hill, mu_data_other, ac_data, ac_data_wt, \
    stats_sum, stats_sum_wt, stats_mean, stats_mean_wt, stats_variance, stats_variance_wt, stats_max, stats_min = \
        data.local_aggregator(node_map,
                              edge_map,
                              node_edge_map,
                              data_map,
                              distances,
                              betas,
                              numerical_arrays=mock_numeric)

    stats_keys = [
        'max', 'min', 'sum', 'sum_weighted', 'mean', 'mean_weighted',
        'variance', 'variance_weighted'
    ]
    stats_data = [
        stats_max, stats_min, stats_sum, stats_sum_wt, stats_mean,
        stats_mean_wt, stats_variance, stats_variance_wt
    ]

    for num_idx, num_label in enumerate(['boo', 'baa']):
        for s_key, stats in zip(stats_keys, stats_data):
            for d_idx, d_key in enumerate(distances):
                assert np.allclose(N.metrics['stats'][num_label][s_key][d_key],
                                   stats[num_idx][d_idx],
                                   atol=0.001,
                                   rtol=0)

    # check that mismatching label and array lengths are caught
    for labels, arrs in (
        (['a'], mock_numeric),  # mismatching lengths
        (['a', 'b'], None),  # missing arrays
        (None, mock_numeric)):  # missing labels
        with pytest.raises(ValueError):
            D.compute_aggregated(stats_keys=labels, stats_data_arrs=arrs)