コード例 #1
0
def test_mtl():
    rho_noise = 0.3
    SNR = 1
    n_epochs, n_channels, n_sources, n_times = 5, 20, 10, 30
    pb_name = "MTL"
    tol = 1e-7

    X, all_epochs, B_star, S_star = get_data_me(
        dictionary_type="Gaussian", noise_type="Gaussian_iid",
        n_epochs=n_epochs, n_channels=n_channels, n_times=n_times,
        n_sources=n_sources, n_active=3, rho_noise=rho_noise,
        SNR=SNR)

    Y = np.mean(all_epochs, axis=0)
    sigma_min = get_sigma_min(Y)
    alpha_max = get_alpha_max(X, Y, sigma_min, pb_name=pb_name)

    alpha_div = 5
    alpha = alpha_max / alpha_div

    B_mtl, S_inv, E, gaps = solver(
        X, Y, alpha, alpha_max, sigma_min, B0=None,
        tol=tol, pb_name=pb_name, n_iter=10000)
    gap = gaps[-1]
    np.testing.assert_array_less(gap, tol)

    _, _, E, gaps = solver(
        X, Y, alpha, alpha_max, sigma_min, B0=B_mtl,
        tol=tol, pb_name=pb_name, n_iter=10000)
    np.testing.assert_equal(len(E), 2)
    gap = gaps[-1]
    np.testing.assert_array_less(gap, tol * E[0])
コード例 #2
0
ファイル: test_mtl.py プロジェクト: lemonskiller/CLaR
def test_mtl_me():
    rho_noise = 0.3
    SNR = 1
    n_epochs, n_channels, n_sources, n_times = 5, 20, 10, 30
    pb_name = "MTLME"
    tol = 1e-7

    X, all_epochs, _, _ = get_data_me(dictionary_type="Gaussian",
                                      noise_type="Gaussian_iid",
                                      n_epochs=n_epochs,
                                      n_channels=n_channels,
                                      n_times=n_times,
                                      n_sources=n_sources,
                                      n_active=3,
                                      rho_noise=rho_noise,
                                      SNR=SNR)

    Y = np.mean(all_epochs, axis=0)
    sigma_min = get_sigma_min(Y)

    alpha_max = get_alpha_max(X, all_epochs, sigma_min, pb_name=pb_name)

    alpha_div = 1.1
    alpha = alpha_max / alpha_div

    gap = solver(X,
                 all_epochs,
                 alpha,
                 sigma_min,
                 B0=None,
                 tol=tol,
                 pb_name=pb_name,
                 n_iter=10000)[-1]
    np.testing.assert_array_less(gap, tol)
コード例 #3
0
ファイル: test_sgcl.py プロジェクト: LifangHe/CLaR
def tests_sgcl(dictionary_type="Gaussian",
               noise_type="Gaussian_iid",
               rho_noise=0.3,
               SNR=0.5,
               n_channels=20,
               n_times=30,
               n_sources=10,
               n_active=3,
               gap_freq=100,
               active_set_freq=1,
               S_freq=10,
               n_iter=10**6,
               p_alpha_max=0.9,
               tol=10**-4):

    X, all_epochs, _, _ = get_data_me(dictionary_type="Gaussian",
                                      noise_type=noise_type,
                                      n_channels=n_channels,
                                      n_times=n_times,
                                      n_sources=n_sources,
                                      n_active=n_active,
                                      rho_noise=rho_noise,
                                      SNR=SNR,
                                      n_epochs=50)

    Y = all_epochs.mean(axis=0)
    sigma_min = get_sigma_min(Y)
    alpha_max = get_alpha_max(X, Y, sigma_min, "SGCL")
    alpha = alpha_max * p_alpha_max
    print("alpha = %.2e" % alpha)
    print("sigma_min = %.2e" % sigma_min)

    all_epochs = np.zeros((1, *Y.shape))
    all_epochs[0] = Y

    B_sgcl, S_inv_sgcl, E, (gaps, gaps_accel) = solver(
        X,
        Y,
        alpha,
        alpha_max,
        sigma_min,
        B0=None,
        n_iter=n_iter,
        gap_freq=gap_freq,
        active_set_freq=active_set_freq,
        S_freq=S_freq,
        pb_name="SGCL",
        use_accel=True,
        tol=tol,
        verbose=True)

    log_gap = np.log10(gaps[-1])
    log_gap_accel = np.log10(gaps_accel[-1])
    assert log_gap_accel < np.log10(tol) * E[0] or \
        log_gap < np.log10(tol) * E[0]
コード例 #4
0
def test_clar(noise_type="Gaussian_iid",
              rho_noise=0.3,
              SNR=0.5,
              n_channels=20,
              n_times=30,
              n_sources=10,
              n_epochs=50,
              n_active=3,
              gap_freq=50,
              active_set_freq=1,
              S_freq=10,
              n_iter=10**4,
              alpha_under_alpha_max=0.2,
              tol=1e-7):
    X, all_epochs, _, _ = get_data_me(dictionary_type="Gaussian",
                                      noise_type=noise_type,
                                      n_epochs=n_epochs,
                                      n_channels=n_channels,
                                      n_times=n_times,
                                      n_sources=n_sources,
                                      n_active=n_active,
                                      rho_noise=rho_noise,
                                      SNR=SNR)
    Y = np.mean(all_epochs, axis=0)
    sigma_min = get_sigma_min(Y)
    alpha_max = get_alpha_max(X, all_epochs, sigma_min, pb_name="CLAR")
    alpha = alpha_max * \
        alpha_under_alpha_max

    print("alpha = %.2e" % alpha)
    print("alpha = %.2e" % alpha)
    print("sigma_min = %.2e" % sigma_min)
    gaps_me = solver(X,
                     all_epochs,
                     alpha,
                     sigma_min,
                     B0=None,
                     n_iter=n_iter,
                     gap_freq=gap_freq,
                     active_set_freq=active_set_freq,
                     S_freq=S_freq,
                     tol=tol,
                     pb_name="CLAR")[-1]
    gap_me = gaps_me[-1]
    assert gap_me < tol
コード例 #5
0
def test_mrce():
    rho_noise = 0.6
    SNR = 1
    n_epochs, n_channels, n_sources, n_times = 5, 20, 10, 30
    pb_name = "mrce"
    tol = 1e-4

    X, all_epochs, B_star, (_, S_star) = get_data_me(
        dictionary_type="Gaussian",
        noise_type="Gaussian_multivariate",
        n_epochs=n_epochs,
        n_channels=n_channels,
        n_times=n_times,
        n_sources=n_sources,
        n_active=3,
        rho_noise=rho_noise,
        SNR=SNR)

    alpha_Sigma_inv = 0.01

    Y = np.mean(all_epochs, axis=0)
    sigma_min = get_sigma_min(Y)
    alpha_max = get_alpha_max(X,
                              all_epochs,
                              sigma_min,
                              pb_name=pb_name,
                              alpha_Sigma_inv=alpha_Sigma_inv)

    alpha = alpha_max * 0.9

    B_mrce, (Sigma,
             Sigma_inv), E, gaps = solver(X,
                                          all_epochs,
                                          alpha,
                                          alpha_max,
                                          sigma_min,
                                          B0=None,
                                          tol=tol,
                                          pb_name=pb_name,
                                          n_iter=1000,
                                          alpha_Sigma_inv=alpha_Sigma_inv)