def fune(): pic = request.form['picture'] model = c_app.models.get('food-items-v1.0') image = CImage(pic) result = model.predict([image]) print(result['outputs'][0]['data']['concepts']) healthy = 1 # Transfer money if food is healthy if healthy: url = 'http://api.reimaginebanking.com/accounts/{}/transfers?key={}'.format( parent, apiKey) payload = { "medium": "balance", "payee_id": child, "amount": 0.01, "transaction_date": "2017-04-09", "description": "Money transferred for healthy food" } response = requests.post( url, data=json.dumps(payload), headers={'content-type': 'application/json'}, ) if response.status_code == 201: print('money transferred') return "yay"
def process_image(): # i = '11111111111111111111111111' + '11111100111111111100111111' + '11110001111100111110001111' + '11000001111000011110000011' +'10000000111000011100000001' +'10000000000000000000000001' +'00000000000000000000000000' +'00000000000000000000000000' +'10000000000000000000000001' +'10000110001000010001100001' +'11001111111100111111110011' +'11100111111100111111100111' + '11111111111111111111111111' # im = Image.open(io.BytesIO(i)) # im.show() image = request.get_data() with open('image.png', 'wb') as f: f.write(base64.b64decode(image)) # image = CImage(url='http://media.npr.org/assets/img/2012/02/04/dietcoke_custom-0473c1516f8a6fd514e84622d0e092ae0172a66c-s300-c85.jpg') image = CImage(file_obj=open('./image.png', 'rb')) res = model.predict([image]) # print(res) prediction = res['outputs'][0]['data']['concepts'][0]['name'] item_code = ncr.getItem(prediction)['itemCode'] price = ncr.getItemPrice(item_code) # print(prediction) # print(price) return json.dumps({"price": price})
def image_request(): name = request.headers.get('name') image = request.get_json(force=True).split(';')[-1].split(',')[-1] name_split = name.split('.') file_name = name_split[0] extension = name_split[1] url = 'https://www.googleapis.com/upload/storage/v1/b/recipeanut-images/o?uploadType=media&name={}'.format(file_name) body = image.decode('base64') headers={ "Content-Type": "image/{}".format(extension) } http = httplib2.Http() resp_headers, resp_body = http.request(url, method='POST', headers=headers, body=body) serving_url = 'https://storage.googleapis.com/recipeanut-images/{}'.format(file_name) model = clar_app.models.get('food-items-v1.0') image = CImage(url=serving_url) resp = model.predict([image]) if resp['status']['description'] == 'Ok': items = {} index = 0 for item in resp['outputs'][0]['data']['concepts']: food = extract_image_data(item) if food != '': items[index] = food index += 1 return json.dumps(items) return 'Image could not be read.'
def pic_colors(**kwargs): logger.critical("Extracting key colors") model = app.models.get('color') image = CImage(**kwargs) output = model.predict([image]) colors = output['outputs'][0]['data']['colors'] for c in colors: c['hsv'] = hsv_color(c['raw_hex']) return sorted(colors, key=lambda c: -c['value'])
def getData(model, venues): venueColorDict = {} for x in range(len(venues)): image = CImage(url=venues[x][1]) imageData = model.predict([image]) colors = imageData['outputs'][0]['data'][ 'colors'] #current color palette colorPalette = [] for y in range(len(colors)): colorPalette.append(colors[y]['raw_hex']) venueColorDict[venues[x][0]] = colorPalette return venueColorDict
def post(imagePath): f = open("./Keys/key_clarifai.txt","r") key = f.readline() f.close() # - `CLARIFAI_API_KEY` app = ClarifaiApp(api_key=key) model = app.models.get('food-items-v1.0') image = CImage(file_obj=open(imagePath, 'rb')) #output this to JSON with open ('./output_data/results.json', 'w') as f: json.dump(model.predict([image]),f)
def uploaded_file(filename): model = app1.models.get('graffiti') image = CImage( file_obj=open('/home/karan/flaskapp/uploads/' + str(filename), 'rb')) z = model.predict([image]) values = [] print(z, file=sys.stderr) results = z['outputs'][0]['data']['concepts'] for tag in results: print(tag['name'], file=sys.stderr) print(tag['value'], file=sys.stderr) values.append(tag['name']) values.append(tag['name']) #print (len(results), file=sys.stderr) #print i['name'] print(str(z['outputs'][0]['data']['concepts'][0]), file=sys.stderr) return app.send_static_file('finalview.html')
def post_view(request): user = check_validation(request) if user: if request.method == 'POST': form = PostForm(request.POST, request.FILES) #checking if form is valid or not if form.is_valid(): image = form.cleaned_data.get('image') caption = form.cleaned_data.get('caption') post = PostModel(user=user, image=image, caption=caption) #saving posts post.save() apikey = 'lBzto9IhYQnI8Z6kd4dFap0gGbFexBgRBknxuISGFK4' request_url = ( 'https://apis.paralleldots.com/sentiment?sentence1=%s&apikey=%s' ) % (caption, apikey) print 'POST request url : %s' % (request_url) sentiment = requests.get(request_url, verify=False).json() sentiment_value = sentiment['sentiment'] path = str(BASE_DIR + '\\' + post.image.url) #imgur api key client = ImgurClient( "315c0833408f9c0", "ab94bfdc68d430ac6f7aa5f16260b1f5d6e27b5e") post.image_url = client.upload_from_path(path, anon=True)['link'] print post.image_url post.save() #keywords that will be helpful in accessing dirty area post keywords = [ 'garbage', 'waste', 'trash', 'dirt', 'pollution', 'dust' ] value_list = [] app = ClarifaiApp(api_key='ecc5aea7265040b4b320b3446f96152c') model = app.models.get('general-v1.3') image = CImage(url=post.image_url) prediction = model.predict([image]) for i in range( 0, len(prediction['outputs'][0]['data']['concepts'])): if prediction['outputs'][0]['data']['concepts'][i][ 'name'] in keywords: value = prediction['outputs'][0]['data']['concepts'][ i]['value'] value_list.append(value) # # checking condition if (sentiment_value < 0.6 and max(value_list) > 0.8): print 'dirty image' send_mail(post.image_url) return redirect('/feed/') else: form = PostForm() #return post html page return render(request, 'post.html', {'form': form}) else: return redirect('/login/')
from clarifai import rest from clarifai.rest import ClarifaiApp app1 = ClarifaiApp("fXY39wieIcnVwRxNlu4d2HbKGupLzHXrvF1rYPMZ", "y6-0qljij7SOOVC1FuRylVhKh7lgeLDu-TIbfkCW") from clarifai.rest import Image as CImage import csv filename = './final_graffiti.csv' print("# for row in csv_reader:") count = 0 with open(filename, 'r') as count_file: csv_reader = csv.reader(count_file) for row in csv_reader: count += 1 if count == 100: break print count model = app1.models.get('nsfw-v1.0') image = CImage(url=str(row[0])) print(model.predict([image]))
def get_ingredients(image): model = app.models.get('food-items-v1.0') image = CImage(url=image) return model.predict([image])