コード例 #1
0
    def __init__(self, client):
        self.client = client
        self.tournament = Tournament()
        self.queue = Tournament.get_tournaments(client)
        self.attr = ['name', 'time', 'prize', 'host', 'roles', 'note']
        self.channels = Channel(client)
        self.roles = Role(client)
        self.checklist = None
        self.modifiers = [{
            'name': 'RequiredRole',
            'value': commands.RoleConverter()
        }, {
            'name': 'MaxParticipants',
            'value': int
        }, 'SpectatorsAllowed', {
            'name': 'PrizeType',
            'value': ModifierUtils.convert_to_prize_type
        }, {
            'name': 'AutoGiveCoins',
            'value': int
        }, {
            'name': 'AssistingTO',
            'value': commands.MemberConverter()
        }]

        asyncio.create_task(self.update_reminders())

        print(self.__class__.__name__ + " cog initialized!")
コード例 #2
0
ファイル: core.py プロジェクト: Geekid812/tournament-master
async def SendFirstTournamentMessage(ctx):
    user = ctx.author
    channels = Channel(ctx.bot)
    embed = discord.Embed(title="Welcome to your first tournament!",
                          description=(f"Hey {user.mention}, you have joined a tournament for the"
                                       " first time! If you are confused, don't worry! I'm here"
                                       " to remind you of the essential steps of a tournament."),
                          color=discord.Color.green())

    embed.add_field(name="Before the game starts, you can chat with fellow participants.",
                    value=("When you join a tournament, you get access to "
                           f" {channels.t_chat.mention} (`{channels.t_chat.name}`)"
                           ", where you can discuss with other players while waiting for the game"
                           " to fill up!"),
                    inline=False)

    embed.add_field(name="Once the host is ready, you will be able to join the game.",
                    value=("In the channel, you will be given the name and password of a custom"
                           " game to join in the Werewolf Online app! Open the Main Menu of the game,"
                           " then go to Play > Custom Games. Find the game in the list and click it, then"
                           " type the password you were given."),
                    inline=False)

    embed.add_field(name="Once everyone has joined, the battle will begin!",
                    value="Good luck and happy hunting!",
                    inline=False)

    try:
        await user.send(embed=embed)
    except discord.HTTPException as e:
        return
コード例 #3
0
def channel_create(client, args, rmx):
    if args is None or len(args) == 0:
        client.send_message(enums.MessageType.HELP, help_regular["create"])
        return True

    channel_name = args.split(" ", 1)[0].strip()
    if channel_name in globals.channel_list:
        client.send_message(enums.MessageType.WARNING,
                            "The specified channel name already exist!"
                            "\nPlease, specify another channel name.")
    else:
        globals.channel_list[channel_name] = Channel(channel_name)
        globals.channel_list[channel_name].add_client(client.get_username())
        globals.channel_list[channel_name].promote_client(client.get_username())

        persistence.channels.create_channel(channel_name)
        persistence.channels.add_channel_moderator(channel_name, client.get_username())

        client.send_channels()
        client.set_channel(channel_name)
        client.send_message(enums.MessageType.INFO,
                            "You have created the #%s channel."
                            "\nThe #%s channel is now your active channel!"
                            % (channel_name, channel_name))

    return True
コード例 #4
0
ファイル: perms.py プロジェクト: Geekid812/tournament-master
    def pred(ctx):
        channels = Channel(ctx.bot)
        list_ = [channels.bot_cmds, channels.t_channel]

        try:
            authorized(ctx, level=1, to=True)
            return True
        except MissingPermissions:
            if ctx.channel in list_: return True

            raise InvalidChannel
コード例 #5
0
ファイル: channel_breakout.py プロジェクト: adamstreu/forex
def get_results_bars(candles, window, search_interval):
    '''    
    This function has been verified with the channel model.
    Results and outcomes collected by it seem to return the correct dfs.
    '''
    # Instantiation
    results = []
    long = []
    short = []
    for i in range(window, candles.shape[0] - search_interval):
        # Print progress.
        if i % 10000 == 0:
            print('Percent complete: {:.2f}'.format(i / candles.shape[0]))
        # Prepare Slice candles for channel and outcome_interval
        closings = candles.loc[i - window:i, 'midclose'].values
        # Fetch channel transformation on window.  Append to results
        channel = Channel(closings)
        results.append([
            i, channel.channel_slope, channel.closings_slope,
            channel.closing_position, channel.channel_range,
            channel.largest_spike, channel.largest_spike_5,
            channel.within_range
        ])
        # Get Outcomes
        average_channel_distance = ((channel.closings_c7[-1] \
                                 - channel.closings_c1[-1]) / 6)
        distance = np.arange(1, 21) * average_channel_distance
        outs = outcomes(candles, i, search_interval, distance)
        long.append([i] + outs['long_target'] + outs['long_loss'])
        short.append([i] + outs['short_target'] + outs['short_loss'])
    # Collect all window results into dataframe
    results_columns = [
        'location', 'channel_slope', 'closings_slope',
        'channel_closing_position', 'channel_range', 'largest_spike',
        'largest_spike_5', 'within_range'
    ]
    results = pd.DataFrame(np.array(results), columns=results_columns)
    results = results.set_index('location', drop=True)
    results.index = results.index.astype(int)
    # Assemble long and short into dataframe and return
    target_columns = []
    loss_columns = []
    for i in range(int((len(long[0]) - 1) / 2)):
        target_columns.append('t' + str(i + 1))
        loss_columns.append('l' + str(i + 1))
    columns = ['location'] + target_columns + loss_columns
    long = pd.DataFrame(np.array(long), columns=columns)
    long = long.set_index('location', drop=True)
    long.index = long.index.astype(int)
    short = pd.DataFrame(np.array(short), columns=columns)
    short = short.set_index('location', drop=True)
    short.index = short.index.astype(int)
    return results, long, short
コード例 #6
0
def get_results_bars(candles, window, search_interval):
    # Instantiation
    results = []
    up = []
    down = []
    for i in range(window, candles.shape[0] - search_interval):
        # Print progress.
        if i % 10000 == 0:
            print('Percent complete: {:.2f}'.format(i / candles.shape[0]))
        # Fetch channel transformation on window.  Append to results
        channel = Channel(candles, i, window)
        results.append([
            i, channel.channel_slope, channel.closings_slope,
            channel.closing_position, channel.channel_range,
            channel.largest_spike, channel.largest_spike_5,
            channel.within_range
        ])
        # Get Outcomes
        distance = np.arange(1, 11) * (channel.channel_range / 6)
        outs = simple_outcomes(candles, i, search_interval, distance)
        up.append([i] + outs['up'])
        down.append([i] + outs['down'])
    # Assemble columns
    results_columns = [
        'location', 'channel_slope', 'closings_slope',
        'channel_closing_position', 'channel_range', 'largest_spike',
        'largest_spike_5', 'within_range'
    ]
    up_columns = ['location']
    down_columns = ['location']
    for i in range(len(up[0]) - 1):
        up_columns.append('u' + str(i + 1))
        down_columns.append('d' + str(i + 1))
    # Assemble Dataframes
    results = pd.DataFrame(np.array(results), columns=results_columns)
    up = pd.DataFrame(np.array(up), columns=up_columns)
    down = pd.DataFrame(np.array(down), columns=down_columns)
    # Correct Indexes
    results = results.set_index('location', drop=True)
    up = up.set_index('location', drop=True)
    down = down.set_index('location', drop=True)
    results.index = results.index.astype(int)
    up.index = up.index.astype(int)
    down.index = down.index.astype(int)
    # Return
    return results, up, down
コード例 #7
0
ファイル: indicators.py プロジェクト: adamstreu/forex
 def get_mean_pos_std(values, window, mean_dict, std_dict, pos_dict,
                      slope_dict):
     #print('Getting Channel mean, std and pos on {}'.format(window))
     mean = [np.nan] * window
     pos = [np.nan] * window
     std = [np.nan] * window
     slope = [np.nan] * window
     for i in range(window, values.shape[0]):
         channel = Channel(values[i - window:i])
         mean.append(channel.flattened.mean())
         std.append(channel.flattened.std())
         pos.append(channel.position_distance_standard)
         slope.append(channel.slope)
     pos_dict[window] = np.array(pos)
     mean_dict[window] = np.array(mean)
     std_dict[window] = np.array(std)
     slope_dict[window] = np.array(slope)
コード例 #8
0
def get_results_bars(candles, window, search_interval, peaks_window, distance):
    # Instantiation
    results = []
    long_target = []
    long_loss = []
    short_target = []
    short_loss = []
    peaks = []
    start = max(window, peaks_window)
    for i in range(start, candles.shape[0] - search_interval):
        # Print progress.
        if i % 10000 == 0:
            print('Percent complete: {:.2f}'.format(i / candles.shape[0]))

        # Fetch channel transformation on window.  Append to results
        channel = Channel(candles, i, window)
        results.append([
            i, channel.channel_slope, channel.closings_slope,
            channel.closing_position, channel.channel_range,
            channel.largest_spike, channel.largest_spike_5,
            channel.within_range, candles.loc[i,
                                              'spread'], candles.loc[i,
                                                                     'volume'],
            channel.c1[-1], channel.c7[-1], channel.closings[-1]
        ])

        # Get Peaks
        peaks_collection = channel.get_supports(peaks_window)
        for peak in peaks_collection:
            peaks.append([i, peak])

        # Set distance for outcome
        if type(distance) == 'str':
            distance = np.arange(1, 11) * (channel.channel_range / 6)
        # Get long outcomes
        outs = outcomes('long', candles, i, search_interval, distance, False)
        long_target.append([i] + outs['target'])
        long_loss.append([i] + outs['loss'])
        # get short outcomes
        outs = outcomes('short', candles, i, search_interval, distance, False)
        short_target.append([i] + outs['target'])
        short_loss.append([i] + outs['loss'])

    # Assemble Dataframes
    results_columns = [
        'location', 'channel_slope', 'closings_slope',
        'channel_closing_position', 'channel_range', 'largest_spike',
        'largest_spike_5', 'within_range', 'spread', 'volume', 'c1', 'c7',
        'closing_value'
    ]
    results = pd.DataFrame(np.array(results), columns=results_columns)
    long_target = pd.DataFrame(np.array(long_target))
    long_loss = pd.DataFrame(np.array(long_loss))
    short_target = pd.DataFrame(np.array(short_target))
    short_loss = pd.DataFrame(np.array(short_loss))
    peaks = pd.DataFrame(np.array(peaks), columns=['location', 'peaks'])
    # Set indexes
    results = results.set_index('location', drop=True)
    long_target = long_target.set_index(0, drop=True)
    long_loss = long_loss.set_index(0, drop=True)
    short_target = short_target.set_index(0, drop=True)
    short_loss = short_loss.set_index(0, drop=True)
    # Correct Indexes
    long_target.index = long_target.index.rename('location')
    long_loss.index = long_loss.index.rename('location')
    short_target.index = short_target.index.rename('location')
    short_loss.index = short_loss.index.rename('location')
    # Set index type
    results.index = results.index.astype(int)
    long_target.index = long_target.index.astype(int)
    long_loss.index = long_loss.index.astype(int)
    short_target.index = short_target.index.astype(int)
    short_loss.index = short_loss.index.astype(int)
    # Return
    return {
        'results': results,
        'long_target': long_target,
        'long_loss': long_loss,
        'short_target': short_target,
        'short_loss': short_loss,
        'peaks': peaks
    }
コード例 #9
0
def plot_currency_universe(cu, plot_index, currencies, ratios, interval):

    ####### Redraw Plots  ######

    # Plots for the currency universe
    for currency in currencies:
        fig = plt.figure(str(currency) + '_set',
                         clear=True,
                         tight_layout=True,
                         facecolor='grey',
                         edgecolor='black')
        gs = gridspec.GridSpec(len(currencies) - 1, 1)
        gs.update(wspace=0, hspace=0)

        # First plot for x ticks
        a = plt.subplot(gs[0, :])
        a.set_facecolor('xkcd:pale grey')
        a.spines['bottom'].set_linewidth(2)
        a.spines['left'].set_linewidth(2)
        a.spines['top'].set_linewidth(2)
        a.spines['right'].set_linewidth(2)
        #plt.setp(a.get_xticklabels(), visible=True)
        # Axis stuff
        for c in range(1, len(currencies) - 1):
            b = plt.subplot(gs[c, :], sharex=a)
            #plt.setp(b.get_xticklabels(), visible=False)
            b.set_facecolor('xkcd:pale grey')
            b.spines['top'].set_visible(True)
            b.spines['right'].set_visible(True)
            b.spines['bottom'].set_linewidth(2)
            b.spines['left'].set_linewidth(2)
            b.spines['top'].set_linewidth(2)
            b.spines['right'].set_linewidth(2)

    ####### Plot Intruments  ######
    for currency in currencies:
        fig = plt.figure(str(currency) + '_set')
        ax = plt.figure(str(currency) + '_set').get_axes()

        # Get Insturment List and which direction to align instrument
        pair_list = []
        shape_list = []
        for pair in ratios.columns:
            if currency.upper() in pair.split('_'):
                pair_list.append(pair)
                if currency.upper() == pair.split('_')[0]:
                    shape_list.append(1)
                else:
                    shape_list.append(-1)

        # Get Slope position for all values (instruments)
        currency_set = pd.DataFrame()
        for i in range(len(pair_list)):
            instrument = pair_list[i]
            shape = shape_list[i]
            if shape == 1:
                values = ratios.loc[plot_index, instrument]
            else:
                values = (ratios.loc[plot_index, instrument] * -1)\
                       + (2 * ratios.loc[plot_index,  instrument].values[-1])
            currency_set[pair_list[i]] = values

        ####### Get Channels with standard devaiton distributions ######
        for c in range(currency_set.shape[1]):

            step = 10
            coll = []
            for i in range(10, interval + step, step):
                channel = Channel(currency_set.iloc[:, c].values)
                test = channel.flattened / channel.channel_deviation
                k2, p = normaltest(test)
                alpha = 1e-3
                #print("p = {:g}".format(p))
                if p < alpha:
                    pass  #print(str(i) + , "The null hypothesis can be rejected")
                else:
                    coll.append(
                        i
                    )  #print(str(i))#  + "The null hypothesis cannot be rejected")
            coll = np.array(coll)

            keep = []
            for i in range(coll.shape[0] - 1):
                if coll[i + 1] > coll[i] + step:
                    keep.append(coll[i])
            if coll.shape[0] > 0: keep.append(coll[-1])
            keep = np.array(keep)

            # Plot currencies
            a = ax[c]
            currency_set.iloc[:, c].plot(ax=a, legend=False, linewidth=2.5)

            # Get ticks by pip for currencies
            max_ticks = currency_set.iloc[:, c].values.max()
            min_ticks = currency_set.iloc[:, c].values.min()
            if currency == 'jpy':
                ticks = np.arange(min_ticks, max_ticks, .1).round(6)
            elif currency == 'hkd':
                ticks = np.arange(min_ticks, max_ticks, .01).round(6)
            else:
                if 'JPY' in currency_set.columns[c].split('_'):
                    ticks = np.arange(min_ticks, max_ticks, .1).round(6)
                elif 'HKD' in currency_set.columns[c].split('_'):
                    ticks = np.arange(min_ticks, max_ticks, .01).round(6)
                else:
                    ticks = np.arange(min_ticks, max_ticks, .001).round(4)

            # Plot each normal section on top with channel lines]
            if keep.shape[0] > 0:
                for k in keep[::-1]:
                    a.plot(plot_index, channel.line, color='lightgrey')
                    a.plot(plot_index,
                           channel.line + (np.ones(plot_index.shape[0]) *
                                           (2 * channel.channel_deviation)),
                           color='black')
                    a.plot(plot_index,
                           channel.line + (np.ones(plot_index.shape[0]) *
                                           (-2 * channel.channel_deviation)),
                           color='black')
                    a.plot(plot_index, channel.line, color='grey')

            a.set_yticks(ticks)
            a.grid(which='both')

        ####### Finalize Plot ######
        for i in range(currency_set.shape[1]):
            ax[i].set_ylabel(currency_set.columns[i],
                             rotation=90,
                             size='large')
            ax[i].yaxis.tick_right()
        #plt.pause(.01)
        '''
コード例 #10
0
    start = 30000
    stop = 60000
    # Run through Iterations collecting stats and outcomes
    up = []
    down = []
    channel_coll = []
    for location in candles.index.values[start:stop]:
        # Print for progress
        if location % 1000 == 0:
            print(location)
        # Get same sats on each interval at location
        for interval in intervals:
            values = candles.loc[location - interval:location,
                                 'bidhigh'].values
            # Get Channel and staistics
            channel = Channel(values)
            channel_coll.append([
                location, interval, candles.loc[location, 'timestamp'],
                candles.loc[location, 'bidhigh'], channel.slope,
                channel.channel_deviation, channel.position_distance,
                channel.position_distance_standard
            ])
        # Get outcomes at location for one simple distance for now
        # distance = np.arange(1, 4) * channel.deviation
        distance = [.00350]
        outs = outcomes('short', candles, location, 15000, distance)
        up.append(outs['loss'])
        down.append(outs['target'])

    # Set results DataFrames
    results_columns = [
コード例 #11
0
ファイル: candles.py プロジェクト: adamstreu/forex
def evaluate_positions(timestamp):
    importlib.reload(ports)
    port = ports.portfolio()
    accounts = port['accounts']
    print('Timestamp: {}'.format(timestamp))
    for instrument in port['portfolio'].keys():
        print('\n---------Instrument-------------: {}'.format(instrument))
        for granularity in port['portfolio'][instrument].keys():
            print('---granularity---: {}'.format(granularity))
            print('Is granularity check passed: {}'.format(
                check_granularity(granularity, timestamp)))
            if check_granularity(granularity, timestamp):
                # get largest window in granularity
                largest_window = max(
                    port['portfolio'][instrument][granularity].keys())
                print('Largest window: {}'.format(largest_window))
                print('-------')
                candles = get_candles_by_count(instrument, granularity,
                                               largest_window + 1)
                for window in port['portfolio'][instrument][granularity].keys(
                ):
                    print('--')
                    print('Window: {}'.format(window))
                    # Evaluate Channeal, profile and filters for window.
                    # Check for breakouts and filter passing
                    closings = candles.midclose.values[-(window):]
                    print('Closings shape: {}'.format(closings.shape))
                    channel = Channel(candles, candles.shape[0] - 1, window)
                    print('Channel position: {}'.format(
                        channel.closing_position))
                    for direction in ['top', 'bottom']:
                        print('Direction: {}'.format(direction))
                        if direction == 'top':
                            breakout = 'short'
                            cond1 = channel.closing_position > port[
                                'portfolio'][instrument][granularity][window][
                                    direction]['position']
                        elif direction == 'bottom':
                            breakout = 'long'
                            cond1 = channel.closing_position < port[
                                'portfolio'][instrument][granularity][window][
                                    direction]['position']
                        print('Breakout Found: {}'.format(cond1))
                        cond2 = True
                        cond3 = True
                        cond4 = True
                        #move this belwo - just wanted it printed here.
                        account = accounts[granularity][window][breakout]
                        print('Account: {}'.format(account))
                        if cond1 and cond2 and cond3 and cond4:
                            # Get account for gran / wind0w / direction comb.
                            # do not place if instrument is already an open pos.
                            print('Instrument not already  placed: {}'.format(
                                instrument not in get_open_positions(account)))
                            if instrument not in get_open_positions(account):
                                # Get target and loss
                                target = port['portfolio'][instrument][
                                    granularity][window][direction]['target']
                                stop = port['portfolio'][instrument][
                                    granularity][window][direction]['stop']
                                target *= channel.channel_range / 6
                                stop *= channel.channel_range / 6
                                if direction == 'bottom':  # long position
                                    target = candles.askclose.values[
                                        -1] + target
                                    stop = candles.askclose.values[-1] - stop
                                    qty = 100
                                else:  # short position
                                    target = candles.bidclose.values[
                                        -1] - target
                                    stop = candles.close.values[-1] + stop
                                    qty = -100
                                # Create Order
                                order = create_order(instrument, qty, target,
                                                     stop, account)
                                print('ORDER PLACED.')
                                print('target, stop, askclose: {}, {}, {}'.
                                      format(target, stop, qty,
                                             candles.askclose.values[-1]))
                                print('order number: {}'.format(order))
                                log_placement(
                                    order, candles, account, instrument,
                                    granularity, window,
                                    port['portfolio'][instrument][granularity]
                                    [window][direction]['target'],
                                    port['portfolio'][instrument][granularity]
                                    [window][direction]['stop'],
                                    channel.channel_range,
                                    channel.closing_position,
                                    channel.largest_spike_5,
                                    channel.channel_slope,
                                    channel.closings_slope, qty, target, stop)
                            else:
                                msg = '{} Breakout on {} found but position already open in account .'
                                log_eval(
                                    msg.format(direction, instrument, account))
    return
コード例 #12
0
ファイル: cycle_matching.py プロジェクト: adamstreu/forex
    outcome_interval = window
    values = candles.loc[start - window + 1:start, 'midclose'].values
    volume = candles.loc[start - window + 1:start, 'volume'].values
    # values = candles_5.loc[start / 5  - window + 1: start / 5 , 'midclose'].values

    # Supports
    support_interval = window * 4
    support_bins = 50

    # Outcomes
    outcome_values = candles.loc[start:start + outcome_interval,
                                 'midclose'].values
    # outcome_values = candles_5.loc[start / 5 : start / 5 + outcome_interval, 'midclose'].values

    # Get Channels
    channel = Channel(values)
    outcome_channel = Channel(outcome_values)

    # get period guess
    corr = autocorrelation(channel.scaled)
    corr_orig = corr.copy()
    margin = int(window * .10)
    corr = corr[margin:-margin]
    maximum = corr[:, 1].argmax()
    minimum = corr[:, 1].argmin()
    corr_period = min(int(window * .75),
                      2 * abs(corr[maximum, 0] - corr[minimum, 0]))
    '''
    corr_peaks  = np.arange((left[:-1] & right[1:]).shape[0])[left[:-1] & right[1:]]
    if corr_peaks.shape[0] == 1:
        corr_period = corr_peaks[0]
コード例 #13
0
     shape = shape_list[i]
     if shape == 1:
         values = ratios.loc[plot_index, instrument]
     else:
         values = (ratios.loc[plot_index, instrument] * -1)\
                + (2 * ratios.loc[plot_index,  instrument].values[-1])
     currency_set[pair_list[i]] = values
     
 
 ####### Get Channels with standard devaiton distributions ######
 for c in range(currency_set.shape[1]):
 
     step = 10
     coll = []
     for i in range(10, interval + step, step):
         channel = Channel(currency_set.iloc[:, c].values)
         test = channel.flattened / channel.channel_deviation
         k2, p = normaltest(test)
         alpha = 1e-3
         #print("p = {:g}".format(p))
         if p < alpha:
             pass #print(str(i) + , "The null hypothesis can be rejected")
         else:
             coll.append(i) #print(str(i))#  + "The null hypothesis cannot be rejected")
     coll = np.array(coll)
 
     keep = []
     for i in range(coll.shape[0] - 1):
         if coll[i + 1] > coll[i] + step:
             keep.append(coll[i])
     if coll.shape[0] > 0: keep.append(coll[-1])
コード例 #14
0
def run(data,
        granularity,
        path=path,
        interval=interval,
        normaltest_step=normaltest_step,
        normaltest_alpha=normaltest_alpha):

    print(granularity)

    # Import Data
    df = pd.read_pickle(path + granularity + '.pkl')
    plot_index = np.arange(df.last_valid_index() - interval,
                           df.last_valid_index() + 1)

    # Plot Data
    for i in range(len(ax)):
        ax[i].cla()
        df.iloc[plot_index, 1 + i].plot(ax=ax[i])

    # Add labels
    for i in range(ax.shape[0]):
        ax[i].set_ylabel(df.columns[i + 1],
                         rotation=90,
                         size='large',
                         color='white')
        ax[i].yaxis.tick_right()
        ax[i].tick_params(axis='y', colors='white')

    # get channels for currency
    for i in range(1, df.columns.shape[0]):
        coll = []
        currency = df.columns[i]
        for s in range(20, interval + normaltest_step, normaltest_step):
            channel = Channel(df.loc[df.last_valid_index() - s: \
                                     df.last_valid_index(), currency].values)
            k2, p = normaltest(channel.flattened / channel.channel_deviation)
            #print("p = {:g}".format(p))
            if p < normaltest_alpha:
                pass  # "The null hypothesis can be rejected")
            else:
                coll.append(s)  # "The null hypothesis cannot be rejected")
        coll = np.array(coll)

        # Get Positions for channel breaks
        keep = []
        for k in range(coll.shape[0] - 1):
            if coll[k + 1] > coll[k] + normaltest_step:
                keep.append(coll[k])
        if coll.shape[0] > 0: keep.append(coll[-1])
        keep = np.array(keep)

        # Plot chnnels by normal break
        for k in keep[::-1]:
            try:
                channel = Channel(df.loc[df.last_valid_index() - k:,
                                         currency].values)
                df.loc[df.last_valid_index() - (k + 1):,
                       currency].plot(ax=ax.ravel()[i - 1],
                                      marker='|',
                                      markersize=.5)
                line = channel.line
                line_x = np.arange(df.last_valid_index() - (k),
                                   df.last_valid_index() + 1)
                ax.ravel()[i - 1].plot(line_x,
                                       line,
                                       color='grey',
                                       linewidth=.5)
                ax.ravel()[i - 1].plot(
                    line_x,
                    line +
                    (np.ones(line.shape[0]) * 2 * channel.channel_deviation),
                    color='black',
                    linewidth=.5)
                ax.ravel()[i - 1].plot(
                    line_x,
                    line +
                    (np.ones(line.shape[0]) * -2 * channel.channel_deviation),
                    color='black',
                    linewidth=.5)
            except Exception as e:
                print(e)
                print(line_x)
                print(df.loc[df.last_valid_index() - k:,
                             currency].index.values)
                print(channel.flattened.shape)
                print(line_x.shape)

    # Add line at next granularity for M15 and M5
    if granularity == 'M15':
        line_break = 3
    else:
        line_break = 5
    if granularity != 'M1':
        max_ticks = df.iloc[plot_index, i].max()
        min_ticks = df.iloc[plot_index, i].min()
        vert = int(df.last_valid_index() - interval / line_break)
        ys = ax[-1].get_ylim()
        ax.ravel()[-1].plot([vert, vert],
                            [ys[0], ys[0] + ((ys[1] - ys[0]) / 3)],
                            color='black',
                            linewidth=.5)

    # Add grid to subplots
    for i in range(1, df.columns.shape[0]):
        max_ticks = df.iloc[plot_index, i].max()
        min_ticks = df.iloc[plot_index, i].min()
        # Different ticks for jpy and hkd
        if df.columns[i] == 'jpy':
            ticks = np.arange(min_ticks, max_ticks, .000005).round(6)
        elif df.columns[i] == 'hkd':
            ticks = np.arange(min_ticks, max_ticks, .00001).round(5)
        else:
            ticks = np.arange(min_ticks, max_ticks, .0005).round(4)
        # Create ticks
        ax.ravel()[i - 1].grid(which='both',
                               linewidth=.5,
                               color='grey',
                               b=True)
        ax.ravel()[i - 1].set_yticks(ticks)

    # Print and Return
    print(df.last_valid_index())
    plt.pause(.01)
コード例 #15
0
fit_avg = 0
does_it_fit = []

# Window
window = 1500
start = 124500  # + s * 10000
outcome_interval = window
values = candles.loc[start - window + 1:start, 'midclose'].values
# Supports
support_interval = window * 2
support_bins = 50
# Outcomes
outcome_values = candles.loc[start:start + outcome_interval, 'midclose'].values

# Get Channels
channel = Channel(values)
outcome_channel = Channel(outcome_values)

# get period guess
corr = autocorrelation(channel.scaled)
corr_orig = corr.copy()
margin = int(window * .10)
corr = corr[margin:-margin]
maximum = corr[:, 1].argmax()
minimum = corr[:, 1].argmin()
corr_period = min(int(window * .75),
                  2 * abs(corr[maximum, 0] - corr[minimum, 0]))
'''
corr_peaks  = np.arange((left[:-1] & right[1:]).shape[0])[left[:-1] & right[1:]]
if corr_peaks.shape[0] == 1:
    corr_period = corr_peaks[0]
コード例 #16
0
ファイル: wave.py プロジェクト: adamstreu/forex
    def __init__(self, values, channel_std=2):
        '''
        Do i even need to flatten it?
        '''

        channel = Channel(values)
        autocorr = get_autocorrelation(channel.flattened)['autocor']
        margin = int(values.shape[0] * .10)
        corr = autocorr[margin:-margin]
        maximum = corr.argmax()  #[:, 1].argmax()
        minimum = corr.argmin()  #[:, 1].argmin()
        corr_period = min(
            int(values.shape[0] * .75),
            2 * abs(corr[maximum] -
                    corr[minimum]))  #abs(corr[maximum, 0] - corr[minimum, 0]))

        # Get corr peaks ( maybe good indicator of 'smoothness'
        smoothness = int(values.shape[0] * .25)
        corr_smoothed = corr  #[:, 1]
        corr_smoothed = pd.DataFrame(corr_smoothed).rolling(
            smoothness).mean().values.ravel()
        corr_smoothed = corr_smoothed[smoothness:]
        left = (corr_smoothed[1:] > corr_smoothed[:-1])
        right = (corr_smoothed[1:] < corr_smoothed[:-1])
        auto_peaks = (left[:-1] & right[1:]).sum()
        if corr_smoothed[0] > corr_smoothed[1]:
            auto_peaks += 1
        if corr_smoothed[-1] > corr_smoothed[-2]:
            auto_peaks += 1

        # Assign first guesses for wave
        c0 = channel.flattened[0] - channel.channel_deviation * 2
        amplitude = channel.channel_deviation * 2
        frequency_guess = values.shape[0] / corr_period
        phase_shift_guess = -np.argmax(channel.flattened < c0)
        vertical_shift_guess = amplitude + c0
        # Get Real Wave
        t = np.linspace(0, 2 * np.pi, channel.flattened.shape[0])
        optimize_func = lambda x: amplitude * np.sin(x[0] * t + x[1]) + x[
            2] - channel.flattened
        est_frequency, est_phase_shift, est_vertical_shift = \
                leastsq(optimize_func, [frequency_guess, phase_shift_guess, vertical_shift_guess], full_output=True)[0]
        # assess fit
        wave = amplitude * np.sin(est_frequency * t +
                                  est_phase_shift) + est_vertical_shift

        # Provide for the tangent
        cosine = amplitude * np.cos(est_frequency * t +
                                    est_phase_shift) + est_vertical_shift

        #if desired, leastsq get me some info on how well each parm fts
        # wave_parameter_fits = leastsq(optimize_func, [frequency_guess, phase_shift_guess, vertical_shift_guess], full_output=True)[2]['qtf']

        self.channel = Channel(values)
        self.amplitude = amplitude
        self.frequency = est_frequency
        self.phase_shift = est_phase_shift
        self.vertical_shift = est_vertical_shift
        self.channel_wave = wave
        self.phase_position = 0  # where in phase (%?) was last position
        self.cosine = cosine
        self.tangent = cosine[-1] / self.channel.channel_deviation / 2
        self.basis = values

        x = np.arange(values.shape[0])
        self.linregress = self.channel.slope * x + self.channel.intercept
        self.wave = self.channel_wave + self.linregress
        self.fit = self.mse(self.wave, values)
コード例 #17
0
###############################################################################
if 0:
    '''
    some possibel score measures:
        frequency of waves - want a few
        fit of wave ?
    '''

    for i in range(100, 1000, 10):
        start = 0
        end = i

        instrument = 'EUR_USD'

        inst = ratios.loc[start:end, instrument].astype(float)
        channel = Channel(inst.values)
        wave = Wave(inst.values)

        plt.figure()
        plt.plot(channel.flattened)
        plt.plot(channel.c5() - channel.line)
        plt.plot(channel.c1() - channel.line)
        plt.plot(wave.wave - wave.linregress)
        plt.show()

        plt.figure()
        plt.plot(channel.flattened)
        plt.plot(channel.c5() - channel.line)
        plt.plot(channel.c1() - channel.line)
        plt.plot(wave.wave - wave.linregress, 'o')
        plt.show()
コード例 #18
0
###########################################################################
spike_collector = np.array([[0, 0, 0, 0]])
for i in range(
        100500,  #max(channels_window, supports_window), 
        candles.shape[0] - outcomes_window):

    # Get values
    start = i
    closings = candles.loc[start - channels_window + 1:start,
                           'midclose'].values
    volumes = candles.loc[start - channels_window + 1:start, 'volume'].values
    outcomes_values = candles.loc[start:start + outcomes_window,
                                  'midclose'].values

    # Get weights
    channel = Channel(closings)
    weighted_closing = ((closings[1:] - closings[:-1]) / volumes[1:]).cumsum()
    w_channel = Channel(weighted_closing)
    weighted_weird = (closings[1:] - closings[:-1]).cumsum() / volumes[1:]

    # Analyze weighted channel spikes.  Add to collector
    if abs((w_channel.scaled[-spike_window:] \
            - w_channel.scaled[-1])).max() > spike_by_channel:
        spike_start = int(channels_window -
                          abs((w_channel.scaled[-spike_window:] -
                               w_channel.scaled[-1])).argmax())
        spike_stop = int(channels_window)
        spike_direction = int(
            np.sign(
                (w_channel.scaled[-1] - w_channel.scaled[-spike_window:])[-abs(
                    (w_channel.scaled[-spike_window:] -
コード例 #19
0
ファイル: forward_channels.py プロジェクト: adamstreu/forex
    # Normal Test
    normaltest_alpha = 1e-10
    normaltest_step = 1

###############################################################################
# Front fill normal test
###############################################################################
if 0:

    breaks = []
    start = df.first_valid_index()
    for step in range(df.first_valid_index() + 10,
                      df.last_valid_index() - 10, normaltest_step):
        try:
            channel = Channel(df.loc[start:step, currency].values)
            k2, p = normaltest(channel.flattened / channel.channel_deviation)
            #print("p = {:g}".format(p))
            if p < normaltest_alpha:
                # "The null hypothesis can be rejected")
                start = step
                breaks.append(step)
            else:
                pass
                # coll.append(step) # "The null hypothesis cannot be rejected")
        except Exception as e:
            print(start, step, e)
    breaks = np.array(breaks)

    df[currency].plot()
    for _break in breaks:
コード例 #20
0
ファイル: channel_breaks.py プロジェクト: adamstreu/forex
    # Create Diff DataFrame for currencies
    cur_diff = pd.DataFrame()
    for column in cur.columns:
        roll = cur[column].rolling(window=2) \
                           .apply(lambda x: (x[1] - x[0])).values
        cur_diff[column] = roll



###############################################################################
###############################################################################
if 1:    
    
    end = 600
    pred = 1200
    channel  = Channel(cur.loc[:end, 'aud'].values, std_ratio = 2)
    wave = Wave(cur.loc[:end, 'aud'].values)
    plt.plot(cur.loc[:end, 'aud'].values)
    plt.figure()
    plt.plot(channel.flattened)
    plt.plot(np.zeros(channel.flattened.shape[0]), color='black')
    plt.plot(np.zeros(channel.flattened.shape[0]) + channel.channel_deviation * 2, color='black')        
    plt.plot(np.zeros(channel.flattened.shape[0]) - channel.channel_deviation * 2, color='black')        
    plt.plot(wave.channel_wave)
    plt.figure()
    plt.plot(cur.loc[:pred, 'aud'].values)    
    plt.plot(cur.loc[:end, 'aud'].values)
    plt.plot(channel.c1(), color='black')
    plt.plot(channel.c3(), color='black')
    plt.plot(channel.c5(), color='black')
    plt.plot(wave.wave)
コード例 #21
0
def get_results_bars(candles, window, search_interval, peaks_window, distance):
    # Instantiation
    results = []
    long_target = []
    long_loss = []
    short_target = []
    short_loss = []
    peaks = []
    start = max(window, peaks_window)
    for i in range(start, candles.shape[0] - search_interval, int(window / 2)):
        # Print progress.
        if i % 10000 == 0:
            print('Percent complete: {:.2f}'.format(i / candles.shape[0]))

        # Fetch channel transformation on window.
        values = candles.loc[i - window + 1:i, 'midclose'].values
        channel = Channel(values)

        # Get Wave information
        corr = autocorrelation(channel.scaled)
        margin = int(window * .10)
        corr = corr[margin:-margin]
        maximum = corr[:, 1].argmax()
        minimum = corr[:, 1].argmin()
        corr_period = min(int(window * .75),
                          2 * abs(corr[maximum, 0] - corr[minimum, 0]))

        # Get corr peaks ( maybe good indicator of 'smoothness'
        smoothness = int(window * .25)
        corr_smoothed = corr[:, 1]
        corr_smoothed = pd.DataFrame(corr_smoothed).rolling(
            smoothness).mean().values.ravel()
        corr_smoothed = corr_smoothed[smoothness:]
        left = (corr_smoothed[1:] > corr_smoothed[:-1])
        right = (corr_smoothed[1:] < corr_smoothed[:-1])
        auto_peaks = (left[:-1] & right[1:]).sum()
        if corr_smoothed[0] > corr_smoothed[1]:
            auto_peaks += 1
        if corr_smoothed[-1] > corr_smoothed[-2]:
            auto_peaks += 1

        # Assign first guesses for wave
        amplitude = (channel.c7[0] - channel.c1[0]) / 2
        frequency_guess = window / corr_period
        phase_shift_guess = -np.argmax(channel.scaled < channel.c1)
        vertical_shift_guess = amplitude + channel.c1[0]
        # Ge Real Wave
        t = np.linspace(0, 2 * np.pi, channel.scaled.shape[0])
        optimize_func = lambda x: amplitude * np.sin(x[0] * t + x[1]) + x[
            2] - channel.scaled
        est_frequency, est_phase_shift, est_vertical_shift = \
                leastsq(optimize_func, [frequency_guess, phase_shift_guess, vertical_shift_guess], full_output=True)[0]
        wave_parameter_fits = leastsq(
            optimize_func,
            [frequency_guess, phase_shift_guess, vertical_shift_guess],
            full_output=True)[2]['qtf']
        # assess fit
        wave = amplitude * np.sin(est_frequency * t +
                                  est_phase_shift) + est_vertical_shift
        fit = ((wave - channel.scaled)**2).mean()

        # Get Supports
        support_interval = window * 2
        support_values = candles.loc[start - support_interval:start,
                                     'midclose'].values
        supports = channel.get_supports(support_values)
        support_by_channel = (supports - channel.closings_c1[-1]) / (
            channel.closings_c7[-1] - channel.closings_c1[-1]).tolist()
        if len(support_by_channel) == 0:
            support_by_channel = [0, 0, 0]
        elif len(support_by_channel) == 1:
            support_by_channel = [
                support_by_channel[0], support_by_channel[0],
                support_by_channel[0]
            ]
        elif len(support_by_channel) == 2:
            support_by_channel = [
                support_by_channel[0], support_by_channel[1],
                support_by_channel[1]
            ]
        elif len(support_by_channel) >= 4:
            support_by_channel = support_by_channel[:3]

        # Build up results
        results.append([
            i, channel.channel_slope, channel.closings_slope,
            channel.closing_position, channel.channel_range,
            channel.channel_degree, channel.linear_p_value,
            channel.largest_spike, channel.largest_spike_5,
            channel.within_range, candles.loc[i, 'spread'],
            candles.loc[i, 'volume'], channel.c1[-1], channel.c7[-1], wave[-1],
            wave[-1] - wave[-2], fit, amplitude, est_frequency,
            est_phase_shift, est_vertical_shift, wave_parameter_fits[0],
            wave_parameter_fits[1], wave_parameter_fits[2],
            support_by_channel[0], support_by_channel[1],
            support_by_channel[2], corr[:, 1].max(), corr[:,
                                                          1].mean(), auto_peaks
        ])

        # Get Peaks
        peaks_collection = channel.get_supports(peaks_window)
        for peak in peaks_collection:
            peaks.append([i, peak])

        # Set distance for outcome
        if type(distance) == str:
            distance = np.array([.25, .5, .75, 1, 1.25, 1.5, 2
                                 ]) * (channel.channel_range)
        # Get long outcomes
        outs = outcomes('long', candles, i, search_interval, distance, False)
        long_target.append([i] + outs['target'])
        long_loss.append([i] + outs['loss'])
        # get short outcomes
        outs = outcomes('short', candles, i, search_interval, distance, False)
        short_target.append([i] + outs['target'])
        short_loss.append([i] + outs['loss'])

    # Assemble Dataframes
    results_columns = [
        'location', 'channel_slope', 'closings_slope',
        'channel_closing_position', 'channel_range', 'channel_degree',
        'linear_p_value', 'largest_spike', 'largest_spike_5', 'within_range',
        'spread', 'volume', 'c1', 'c7', 'wave_position', 'wave_tangent',
        'wave_fit', 'amplitude', 'frequency', 'phase_shift', 'vertical_shift',
        'frequency_fit', 'phase_fit', 'vert_fit', 'support_0', 'support_1',
        'support_2', 'auto_max', 'auto_mean', 'auto_peaks'
    ]

    results = pd.DataFrame(np.array(results), columns=results_columns)
    long_target = pd.DataFrame(np.array(long_target))
    long_loss = pd.DataFrame(np.array(long_loss))
    short_target = pd.DataFrame(np.array(short_target))
    short_loss = pd.DataFrame(np.array(short_loss))
    peaks = pd.DataFrame(np.array(peaks), columns=['location', 'peaks'])
    # Set indexes
    results = results.set_index('location', drop=True)
    long_target = long_target.set_index(0, drop=True)
    long_loss = long_loss.set_index(0, drop=True)
    short_target = short_target.set_index(0, drop=True)
    short_loss = short_loss.set_index(0, drop=True)
    # Correct Indexes
    long_target.index = long_target.index.rename('location')
    long_loss.index = long_loss.index.rename('location')
    short_target.index = short_target.index.rename('location')
    short_loss.index = short_loss.index.rename('location')
    # Set index type
    results.index = results.index.astype(int)
    long_target.index = long_target.index.astype(int)
    long_loss.index = long_loss.index.astype(int)
    short_target.index = short_target.index.astype(int)
    short_loss.index = short_loss.index.astype(int)
    # Return
    return {
        'results': results,
        'long_target': long_target,
        'long_loss': long_loss,
        'short_target': short_target,
        'short_loss': short_loss,
        'peaks': peaks
    }
コード例 #22
0
def plot_currency_indicators(currencies, cu, ratios, plot_index,
                             indicator_index, interval, windows, color_list):

    # Plots for each currency indicators
    for currency in currencies:
        fig = plt.figure(currency,
                         clear=True,
                         tight_layout=True,
                         facecolor='grey')
        gs = gridspec.GridSpec(5, 5)
        gs.update(wspace=0, hspace=0)
        # Arange subplots sizing
        ax1 = plt.subplot(gs[0, :])
        ax8 = plt.subplot(gs[1, :], sharex=ax1)
        ax9 = plt.subplot(gs[2, :], sharex=ax1)
        ax10 = plt.subplot(gs[3, :], sharex=ax1)
        ax2 = plt.subplot(gs[4, 0])
        ax3 = plt.subplot(gs[4, 1], sharey=ax2)
        ax4 = plt.subplot(gs[4, 2], sharey=ax2)
        ax5 = plt.subplot(gs[4, 3], sharey=ax2)
        ax6 = plt.subplot(gs[4, 4], sharey=ax2)
        # Axis stuff
        plt.setp(ax3.get_yticklabels(), visible=False)
        plt.setp(ax4.get_yticklabels(), visible=False)
        plt.setp(ax5.get_yticklabels(), visible=False)
        plt.setp(ax6.get_yticklabels(), visible=False)
        plt.setp(ax1.get_xticklabels(), visible=False)
        plt.setp(ax8.get_xticklabels(), visible=False)
        plt.setp(ax9.get_xticklabels(), visible=False)
        plt.setp(ax10.get_xticklabels(), visible=False)
        ax1.set_facecolor('xkcd:pale grey')
        ax2.set_facecolor('xkcd:pale grey')
        ax3.set_facecolor('xkcd:pale grey')
        ax4.set_facecolor('xkcd:pale grey')
        ax5.set_facecolor('xkcd:pale grey')
        ax6.set_facecolor('xkcd:pale grey')
        ax8.set_facecolor('xkcd:pale grey')
        ax9.set_facecolor('xkcd:pale grey')
        ax10.set_facecolor('xkcd:pale grey')

    ###############################################################################
    # Plot currencies.  Color by Standard Normal organizatio.  With regression line.
    ###############################################################################
    if 1:

        for currency in currencies:

            # Set ax and figure
            ax = plt.figure(currency).get_axes()

            # Get ticks by pip for currencies
            max_ticks = cu.loc[plot_index, currency].values.max()
            min_ticks = cu.loc[plot_index, currency].values.min()
            if currency == 'hkd':
                ticks = np.arange(min_ticks, max_ticks, .00001).round(6)
            elif currency == 'jpy':
                ticks = np.arange(min_ticks, max_ticks, .000005).round(6)
            else:
                ticks = np.arange(min_ticks, max_ticks, .0001).round(4)

            step = 10
            coll = []
            for i in range(10, interval + step, step):
                channel = Channel(cu.loc[cu.last_valid_index() - i: \
                                         cu.last_valid_index(), currency].values)
                k2, p = normaltest(channel.flattened)
                alpha = 1e-3
                #print("p = {:g}".format(p))
                if p < alpha:
                    pass  #print(str(i) + , "The null hypothesis can be rejected")
                else:
                    coll.append(
                        i
                    )  #print(str(i))#  + "The null hypothesis cannot be rejected")
            coll = np.array(coll)

            keep = []
            for i in range(coll.shape[0] - 1):
                if coll[i + 1] > coll[i] + step:
                    keep.append(coll[i])
            if coll.shape[0] > 0: keep.append(coll[-1])
            keep = np.array(keep)

            # Plot currencies
            a = ax[0]
            cu.loc[plot_index, currency].plot(ax=a)
            # cu.loc[plot_index, currency].plot(ax=ax[0], color='blue', marker='+')

            # Plot each normal section on top
            for k in keep[::-1]:
                channel = Channel(cu.loc[cu.last_valid_index() - k:,
                                         currency].values)
                cu.loc[cu.last_valid_index() - k:, currency].plot(ax=a)
                a.plot(np.arange(cu.last_valid_index() - (k + 1),
                                 cu.last_valid_index()),
                       channel.line,
                       color='grey')
                cu.loc[cu.last_valid_index() - k:, currency].plot(ax=a,
                                                                  marker='.')

            plt.setp(a.get_xticklabels(), visible=True)
            a.set_title('Currency Price')
            a.set_yticks(ticks)
            a.grid(which='both')

    print(currency)

    ###############################################################################
    # Graph shifted Currency Sets.  Align inverse positions
    ###############################################################################
    if 1:
        for currency in currencies:

            # Set ax and figure
            ax = plt.figure(currency).get_axes()

            # Get Insturment List and which direction to align instrument
            pair_list = []
            shape_list = []
            for pair in ratios.columns:
                if currency.upper() in pair.split('_'):
                    pair_list.append(pair)
                    if currency.upper() == pair.split('_')[0]:
                        shape_list.append(1)
                    else:
                        shape_list.append(-1)

            # Get Slope position for all values (instruments)
            currency_set = pd.DataFrame()
            has_jpy = pd.DataFrame()
            for i in range(len(pair_list)):
                instrument = pair_list[i]
                shape = shape_list[i]
                if shape == 1:
                    values = ratios.loc[plot_index, instrument]
                else:
                    values = (ratios.loc[plot_index, instrument] * -1)\
                           + (2 * ratios.loc[plot_index,  instrument].values[-1])
                # Don't include jpy, hkd inside shifted currency sets for others
                if currency != 'JPY' and currency != 'HKD':
                    if 'JPY' in instrument.split(
                            '_') or 'HKD' in instrument.split('_'):
                        has_jpy[pair_list[i]] = values
                    else:
                        currency_set[pair_list[i]] = values
                else:
                    currency_set[pair_list[i]] = values

            try:
                # Plot Values
                a = ax[3]
                (currency_set -
                 currency_set.loc[currency_set.first_valid_index()]).plot(ax=a)
                a.plot(plot_index,
                       np.ones(plot_index.shape[0]) * 0,
                       color='grey')
                a.set_title('Shifted Currency Set - excluding JPY and HKD')
            except:
                pass
                print(
                    'had nothing for jpy, hkd - see line 118, plot_indicaotrs')

    ###############################################################################
    # Plot currency set average positions and slopes over multiple windows
    ###############################################################################
    if 1:

        for currency in currencies:

            # Set ax and figure
            ax = plt.figure(currency).get_axes()

            slopes_mean = pd.DataFrame()
            position_mean = pd.DataFrame()
            for w in range(windows.shape[0]):
                win = np.array([windows[w]])

                # Get Insturment List and which direction to align instrument
                pair_list = []
                shape_list = []
                for pair in ratios.columns:
                    if currency.upper() in pair.split('_'):
                        pair_list.append(pair)
                        if currency.upper() == pair.split('_')[0]:
                            shape_list.append(1)
                        else:
                            shape_list.append(-1)

                # Get Slope position for all values (instruments)
                positions = pd.DataFrame()
                deviations = pd.DataFrame()
                slopes = pd.DataFrame()
                for i in range(len(pair_list)):
                    instrument = pair_list[i]
                    shape = shape_list[i]
                    if shape == 1:
                        values = ratios.loc[indicator_index, instrument]
                    else:
                        values = (ratios.loc[indicator_index, instrument] * -1)\
                               + (2 * ratios.loc[indicator_index,  instrument].values[-1])
                    pos = get_channel_mean_pos_std(values.values, win)
                    positions[instrument] = pos['pos'].values.ravel()
                    deviations[instrument] = pos['std'].values.ravel()
                    slopes[instrument] = pos['slope'].values.ravel()

                # Arange Index to match currency locations
                slopes_mean[win[0]] = slopes.mean(axis=1)
                position_mean[win[0]] = positions.mean(axis=1)

                # Plot positions for each window
                end_values = -15
                positions.index = indicator_index
                a = ax[w + 4]
                positions.loc[plot_index[end_values:]].plot(ax=a, legend=False)
                positions.loc[plot_index[end_values:]].mean(axis=1).plot(
                    ax=a, color='black', legend=False)
                a.plot(plot_index[end_values:],
                       np.ones(plot_index.shape[0])[end_values:] * 2,
                       color='grey')
                a.plot(plot_index[end_values:],
                       np.ones(plot_index.shape[0])[end_values:] * -2,
                       color='grey')
                a.plot(plot_index[end_values:],
                       np.ones(plot_index.shape[0])[end_values:] * 0,
                       color='grey')
                a.set_title(windows[w])

            # Arange Index to match currency locations
            position_mean.index = indicator_index
            slopes_mean.index = indicator_index

            # Plot currency set position average over mulitple windows
            a = ax[1]
            position_mean.loc[plot_index].plot(ax=a,
                                               colors=color_list,
                                               legend=False)
            a.plot(plot_index, np.ones(plot_index.shape[0]) * 2, color='grey')
            a.plot(plot_index, np.ones(plot_index.shape[0]) * -2, color='grey')
            a.plot(plot_index, np.ones(plot_index.shape[0]) * 0, color='grey')
            a.set_title(
                'Mean of Currency Set Channel Positions on Mulitple Windows')
            a.grid(axis='x')

            # Plot currency set Slope average over mulitple windows
            a = ax[2]
            slopes_mean.loc[plot_index].plot(ax=a, colors=color_list)
            a.plot(plot_index, np.ones(plot_index.shape[0]) * 0, color='grey')
            a.set_title('Mean of Currency Set Slopes on Mulitple Windows')
            a.grid(axis='x')
コード例 #23
0
    short_loss = []
    for i in range(max(channels_window, supports_window),
                   candles.shape[0] - outcomes_window):
        if i % 10000 == 0:
            print('Percent complete: {:.2f}'.format(i / candles.shape[0]))

        # Get values
        start = i
        closings = candles.loc[start - channels_window + 1:start,
                               'midclose'].values
        volumes = candles.loc[start - channels_window + 1:start,
                              'volume'].values
        outcomes_values = candles.loc[start:start + outcomes_window,
                                      'midclose'].values
        # Get weights
        channel = Channel(closings)
        weighted_closing = ((closings[1:] - closings[:-1]) /
                            volumes[1:]).cumsum()
        w_channel = Channel(weighted_closing)
        weighted_weird = (closings[1:] - closings[:-1]).cumsum() / volumes[1:]
        # weigthed spikes
        weighted_spikes = w_channel.scaled[-1] - w_channel.scaled[
            -spike_windows]
        # Append to results
        tmp = [
            i,
            channel.channel_slope,
            channel.closings_slope,
            channel.closing_position,
            channel.channel_range,
            channel.largest_spike,
コード例 #24
0
    # Get Indicators
    rolling_pos, rolling_dev = get_rolling(cu, currencies, windows)
    correlation = get_correlation(cu, currencies, windows)
    channel_pos, channel_dev = get_channels(cu, currencies, windows)

    cu = cu.reset_index()
    ratios = ratios.reset_index()
    eur = cu.eur.copy()

###############################################################################
# Complete all indicators over backfilled cu
###############################################################################
if 0:

    make_channel_values = eur.loc[:1700].values
    channel = Channel(make_channel_values)

    channel_upper = get_distribution_boundary(channel.flattened,
                                              .02)['upper_bound']
    channel_lower = get_distribution_boundary(channel.flattened,
                                              .02)['lower_bound']

    channel_window = 60
    channel_position = channel_pos.loc[channel_pos.currency == 'eur']\
                       .loc[channel_pos.windows == channel_window, 'channel_pos']
    channel_position = channel_position.reset_index(drop=True)
    channel_position = pd.DataFrame(
        np.insert(channel_position.values, 0, [np.nan] * channel_window))
    channel_deviation = channel_dev.loc[channel_dev.currency == 'eur']\
                       .loc[channel_dev.windows == channel_window, 'channel_deviation']
    channel_deviation = channel_deviation.reset_index(drop=True)
コード例 #25
0
from classes.channel import Channel

# Client list
client_list = {}

# Channel list
channel_list = {"general": Channel("general")}
コード例 #26
0
            Rolling Std.     ( and mean/variance)
            Rolling Position ( and mean/variance)
        Against Currency 
        
    '''

    # Plot
    # -----------------------------------------------------------------------------
    fig, ax = plt.subplots(4, 3, figsize=(10, 10), sharex=True)
    color_list = plt.cm.Blues(np.linspace(.25, .75, windows.shape[0]))

    # Currency (All Top Row)
    # -----------------------------------------------------------------------------
    ax[3, 0].plot(cur1)
    ax1 = ax[3, 0].twinx()
    ax1.plot(Channel(cur1).flattened, color='orange')
    ax[3, 1].plot(cur1_diff)
    ac(cur1, ax=ax[3, 2])

    # Mean (Left Column)
    # -----------------------------------------------------------------------------
    # Normal
    mean_waves.plot(color=color_list, ax=ax[0, 0])
    mean_waves.mean(axis=1).plot(color='black', ax=ax[0, 0])
    ax1 = ax[0, 0].twinx()
    mean_waves.std(axis=1).plot(color='orange', ax=ax1)
    # Flattened
    mean_waves_flat.plot(color=color_list, ax=ax[1, 0])
    mean_waves_flat.mean(axis=1).plot(color='black', ax=ax[1, 0])
    ax1 = ax[1, 0].twinx()
    mean_waves_flat.std(axis=1).plot(color='orange', ax=ax1)