コード例 #1
0
    def execute_process(self, key, **kwargs):

        logging.info('Commencing caching of fundraiser totals data at:  %s' %
                     self.CACHING_HOME)

        end_time = TP.timestamp_from_obj(datetime.datetime.utcnow(), 1, 3)
        """ DATA CONFIG """
        """ set the metrics to plot """
        lttdl = DL.LongTermTrendsLoader(db='db1025')

        start_of_2011_fundraiser = '20111116000000'
        countries = DL.CiviCRMLoader().get_ranked_donor_countries(
            start_of_2011_fundraiser)
        countries.append('Total')
        """ Dictionary object storing lists of regexes - each expression must pass for a label to persist """
        year_groups = dict()
        for country in countries:
            if cmp(country, 'Total') == 0:
                year_groups['2011 Total'] = ['2011.*']
                year_groups['2010 Total'] = ['2010.*']
            else:
                year_groups['2011 ' + country] = ['2011' + country]
                year_groups['2010 ' + country] = ['2010' + country]

        metrics = 'amount'
        weights = ''
        groups = year_groups
        group_metrics = ['year', 'country']

        metric_types = DL.LongTermTrendsLoader._MT_AMOUNT_

        include_totals = False
        include_others = False
        hours_back = 0
        time_unit = TP.DAY
        """ END CONFIG """
        """ For each metric use the LongTermTrendsLoader to generate the data to plot """

        dr = DR.DataReporting()

        times, counts = lttdl.run_fundrasing_totals(end_time, metric_name=metrics, metric_type=metric_types, groups=groups, group_metric=group_metrics, include_other=include_others, \
                                        include_total=include_totals, hours_back=hours_back, weight_name=weights, time_unit=time_unit)
        dict_param = dict()

        for country in countries:

            key_2011 = '2011 ' + country
            key_2010 = '2010 ' + country

            new_counts = dict()
            new_counts[key_2010] = counts[key_2010]
            new_counts[key_2011] = counts[key_2011]

            new_times = dict()
            new_times[key_2010] = times[key_2010]
            new_times[key_2011] = times[key_2011]

            dr._counts_ = new_counts
            dr._times_ = new_times

            empty_data = [0] * len(new_times[new_times.keys()[0]])
            data = list()
            data.append(dr.get_data_lists([''], empty_data))

            dict_param[country] = Hlp.combine_data_lists(data)

        self.clear_cached_data(key)
        self.cache_data(dict_param, key)

        logging.info('Caching complete.')
コード例 #2
0
    def execute_process(self, key, **kwargs):

        logging.info('Commencing caching of long term trends data at:  %s' %
                     self.CACHING_HOME)

        end_time, start_time = TP.timestamps_for_interval(datetime.datetime.utcnow(), 1, \
                                                          hours=-self.VIEW_DURATION_HRS, resolution=1)
        """ DATA CONFIG """

        countries = DL.CiviCRMLoader().get_ranked_donor_countries(start_time)
        countries = countries[1:6]
        """ set the metrics to plot """
        lttdl = DL.LongTermTrendsLoader(db='storage3')
        """ Dictionary object storing lists of regexes - each expression must pass for a label to persist """
        # country_groups = {'US': ['(US)'], 'CA': ['(CA)'], 'JP': ['(JP)'], 'IN': ['(IN)'], 'NL': ['(NL)']}
        payment_groups = {'Credit Card': ['^cc$'], 'Paypal': ['^pp$']}
        currency_groups = {
            'USD': ['(USD)'],
            'CAD': ['(CAD)'],
            'JPY': ['(JPY)'],
            'EUR': ['(EUR)']
        }
        lang_cntry_groups = {
            'US': ['US..', '.{4}'],
            'EN': ['[^U^S]en', '.{4}']
        }

        top_cntry_groups = dict()
        for country in countries:
            top_cntry_groups[country] = [country, '.{2}']

        # To include click rate
        # groups = [ lang_cntry_groups] metrics = ['click_rate'] metrics_index = [3]
        # group_metrics = [DL.LongTermTrendsLoader._MT_RATE_] metric_types = ['country', 'language'] include_totals = [True] include_others = [True]

        metrics = [
            'impressions', 'views', 'donations', 'donations', 'amount',
            'amount', 'diff_don', 'diff_don', 'donations', 'conversion_rate'
        ]
        weights = ['', '', '', '', '', '', 'donations', 'donations', '', '']
        metrics_index = [0, 1, 2, 2, 2, 4, 5, 5, 6, 6]
        groups = [lang_cntry_groups, lang_cntry_groups, lang_cntry_groups, top_cntry_groups, lang_cntry_groups, currency_groups, \
                  lang_cntry_groups, lang_cntry_groups, payment_groups, payment_groups]
        """  The metrics that are used to build a group string to be qualified via regex - the values of the list metrics are concatenated """
        group_metrics = [['country', 'language'], ['country', 'language'], ['country', 'language'], \
                         ['country', 'language'], ['country', 'language'], ['currency'], ['country', 'language'], \
                         ['country', 'language'], ['payment_method'], ['payment_method']]

        metric_types = [DL.LongTermTrendsLoader._MT_AMOUNT_, DL.LongTermTrendsLoader._MT_AMOUNT_, DL.LongTermTrendsLoader._MT_AMOUNT_, \
                        DL.LongTermTrendsLoader._MT_AMOUNT_, DL.LongTermTrendsLoader._MT_AMOUNT_, DL.LongTermTrendsLoader._MT_AMOUNT_, \
                        DL.LongTermTrendsLoader._MT_RATE_WEIGHTED_, DL.LongTermTrendsLoader._MT_RATE_WEIGHTED_, DL.LongTermTrendsLoader._MT_AMOUNT_, \
                        DL.LongTermTrendsLoader._MT_RATE_]

        include_totals = [
            True, True, True, False, True, True, False, False, False, True
        ]
        include_others = [
            True, True, True, False, True, True, True, True, True, False
        ]
        hours_back = [0, 0, 0, 0, 0, 0, 24, 168, 0, 0]
        time_unit = [
            TP.HOUR, TP.HOUR, TP.HOUR, TP.HOUR, TP.HOUR, TP.HOUR, TP.HOUR,
            TP.HOUR, TP.HOUR, TP.HOUR
        ]

        data = list()
        """ END CONFIG """
        """ For each metric use the LongTermTrendsLoader to generate the data to plot """
        for index in range(len(metrics)):

            dr = DR.DataReporting()

            times, counts = lttdl.run_query(start_time, end_time, metrics_index[index], metric_name=metrics[index], metric_type=metric_types[index], \
                                            groups=groups[index], group_metric=group_metrics[index], include_other=include_others[index], \
                                            include_total=include_totals[index], hours_back=hours_back[index], weight_name=weights[index], \
                                            time_unit=time_unit[index])

            times = TP.normalize_timestamps(times, False, time_unit[index])

            dr._counts_ = counts
            dr._times_ = times

            empty_data = [0] * len(times[times.keys()[0]])
            data.append(dr.get_data_lists([''], empty_data))

        dict_param = Hlp.combine_data_lists(data)
        dict_param['interval'] = self.VIEW_DURATION_HRS
        dict_param['end_time'] = TP.timestamp_convert_format(end_time, 1, 2)

        self.clear_cached_data(key)
        self.cache_data(dict_param, key)

        logging.info('Caching complete.')