def get_training_and_test_from_file(f_test, f_train): test = [] training = [] for line in f_test: if (line != ""): string_list = line.split() classification = string_list.pop() np = numpy.array(string_list) npfloat = np.astype(numpy.float) image_data_obj = ImageData(classification, npfloat) test.append(image_data_obj) else: print("Found one blank line") for line in f_train: if (line != ""): string_list = line.split() classification = string_list.pop() np = numpy.array(string_list) npfloat = np.astype(numpy.float) image_data_obj = ImageData(classification, npfloat) training.append(image_data_obj) else: print("Found one blank line") return training, test
def __init__(self, imgPath, initImage, initValid): #We should do error checking in main, but let's do it again if (FileClass.check_dir(imgPath) == False): print('ERROR: Directory \"%s\" does not exist' % IMAGE_PATH) sys.exit(1) #Getting all of the images in a manageable way AllImages = [ ImageData.ImageData(os.path.join(root, name)) for root, dirs, files in os.walk(IMAGE_PATH) for name in files ] self.ImgPath = AllImages self.Images = [ImageData.ImageData(initImage)] self.Validation = [ImageData.ImageData(initValid)]
def folder_processing(classification, folder_path, file): data_list = [] for filepath in glob(folder_path + '\\**'): image = imread(filepath) resized_image = resize(image, (80, 80), anti_aliasing=True) histograms_data = hog(resized_image, orientations=8, pixels_per_cell=(8, 8), cells_per_block=(10, 10), feature_vector=True) data = ImageData(classification, histograms_data) file.write(data.__repr__() + "\n") data_list.append(data) return data_list
def get_data_from_file(file): image_data_list = [] separated_characters = [] character_data = [] count = 0 for line in file: if (line != ""): string_list = line.split() classification = string_list.pop() np = numpy.array(string_list) npfloat = np.astype(numpy.float) image_data_obj = ImageData(classification, npfloat) character_data.append(image_data_obj) image_data_list.append(image_data_obj) else: print("Found one blank line") count += 1 if (count > 54): count = 0 separated_characters.append(character_data) character_data = [] return image_data_list, separated_characters
print("Seed was:", seed) #Will later have user input to find where the images are #Checking the directories if (FileClass.check_dir(IMAGE_PATH) == False): print('ERROR: Directory \"%s\" does not exist' % IMAGE_PATH) sys.exit(1) if (FileClass.check_dir(VALIDATION_PATH) == False): print("ERROR: Directory \"%s\" does not exist" % VALIDATION_PATH) sys.exit(1) #Making an ImageData object for all of the regular images AllImages = [ ImageData.ImageData(os.path.join(root, name)) for root, dirs, files in os.walk(IMAGE_PATH) for name in files ] #Making an ImageData object for all of the labeled images ValImages = [ ImageData.ImageData(os.path.join(root, name)) for root, dirs, files in os.walk(VALIDATION_PATH) for name in files ] #Let's get all possible values in lists Algos = ['FF', 'MCV', 'AC', 'FB', 'CV', 'WS', 'QS'] #Need to add floods #Taking out grayscale: CV, MCV, FD #Took out 'MCV', 'AC', FB, SC, CV, WS #Quickshift(QS) takes a long time, so I'm taking it out for now. betas = [i for i in range(0, 1000)]
rng = random.Random(seed) print("Seed was:", seed) #seed = SEED #Will later have user input to find where the images are #Checking the directories if (FileClass.check_dir(IMAGE_PATH) == False): print ('ERROR: Directory \"%s\" does not exist'%IMAGE_PATH) sys.exit(1) if(FileClass.check_dir(VALIDATION_PATH) == False): print("ERROR: Directory \"%s\" does not exist"%VALIDATION_PATH) sys.exit(1) #Making an ImageData object for all of the regular images AllImages = [ImageData.ImageData(os.path.join(root, name)) for root, dirs, files in os.walk(IMAGE_PATH) for name in files] #Making an ImageData object for all of the labeled images ValImages = [ImageData.ImageData(os.path.join(root, name)) for root, dirs, files in os.walk(VALIDATION_PATH) for name in files] #Let's get all possible values in lists Algos = ['FB','SC','WS','CV','MCV','AC'] #Need to add floods #Quickshift(QS) takes a long time, so I'm taking it out for now. betas = [i for i in range(0,10000)] tolerance = [float(i)/1000 for i in range(0,1000,1)] scale = [i for i in range(0,10000)] sigma = [float(i)/100 for i in range(0,10,1)]
rng = random.Random(seed) print("Seed was:", seed) #Will later have user input to find where the images are #Checking the directories if (FileClass.check_dir(IMAGE_PATH) == False): print ('ERROR: Directory \"%s\" does not exist'%IMAGE_PATH) sys.exit(1) if(FileClass.check_dir(VALIDATION_PATH) == False): print("ERROR: Directory \"%s\" does not exist"%VALIDATION_PATH) sys.exit(1) #Making an ImageData object for all of the regular images AllImages = [ImageData.ImageData(os.path.join(root, name)) for root, dirs, files in os.walk(IMAGE_PATH) for name in files] #Making an ImageData object for all of the labeled images ValImages = [ImageData.ImageData(os.path.join(root, name)) for root, dirs, files in os.walk(VALIDATION_PATH) for name in files] #Let's get all possible values in lists Algos = ['FF', 'MCV', 'AC', 'FB', 'CV', 'WS', 'QS'] #Need to add floods #Taking out grayscale: CV, MCV, FD #Took out 'MCV', 'AC', FB, SC, CV, WS #Quickshift(QS) takes a long time, so I'm taking it out for now. betas = [i for i in range(0,1000)] tolerance = [float(i)/1000 for i in range(0,1000,1)] scale = [i for i in range(0,1000)]