コード例 #1
0
#    print "%s score : %f" % (m_classifiers_name_it, m_cross_validation_score[m_classifiers_name_it])

print "training classifiers:"
TraininAllClassifiers(m_classifiers, train_data, train_label, train_data,
                      train_label)

save_classifiers(m_classifiers)
###########################################
###### preditct and show the result #######
###########################################
try:
    notexist
    predict_res
except NameError:
    print "testing in real test data:"
    predict_res = PrediectinAllClassifiers(m_classifiers, test_data)
else:
    print "Predict has been extracted!"
m_predictMode = ModethePredict(test_data, predict_res)
PlotPredictRes(m_predictMode, 'MODE')

df = pd.DataFrame(m_predictMode)
df = df.T
df.to_csv("../prefile.txt", sep=' ', index=False, header=False)

# save center and scalar to file
m_cent = m_normalizer.robust_scaler.center_
m_scal = m_normalizer.robust_scaler.scale_
m_cent = pd.DataFrame(m_cent)
m_scal = pd.DataFrame(m_scal)
m_cent.to_csv("../center.txt", sep=' ', index=False, header=False)
コード例 #2
0
train_data, test_data, train_label, test_label = cross_validation.train_test_split(
    train_data, train_label, test_size=0.1)
print "training classifiers:"
TraininAllClassifiers(train_data, train_label, test_data, test_label)

###########################################
###### preditct and show the result #######
###########################################
test_naivedata = featureOf_TestinTrain
try:
    notexist
    predictRes
except NameError:
    print "testing in train data:"
    predictRes = PrediectinAllClassifiers(test_naivedata)
else:
    print "Predict has been extracted!"
m_predictMode = ModethePredict(test_naivedata, predictRes)
PlotTestSeqandPredictRes(
    m_normalized_traindata.loc[121200:149000]['accelerometerX'], m_predictMode,
    'MODE')
a = m_predictMode
test_realdata = featureOf_TestinReal
try:
    notexist
    predictResinReal
except NameError:
    print "testing in real test data:"
    predictResinReal = PrediectinAllClassifiers(test_realdata)
else:
コード例 #3
0
        train_data = train_data.append(featureOf_Train[i].loc[j])
        train_label.append(label_numlabel[label_name[i]])

###########################################
############# normalize data ##############
###########################################
print "normalize feature:"
m_normalizer = processingFeature.Normalizer("robust", train_data)
train_data = m_normalizer.normalizer(train_data)
featureOf_TestinReal = m_normalizer.normalizer(featureOf_TestinReal)

print "PCA feature:"
m_pcaor = processingFeature.PCAor("normal", train_data, 50)
train_data = m_pcaor.pcaor(train_data)
featureOf_TestinReal = m_pcaor.pcaor(featureOf_TestinReal)

train_data, test_data, train_label, test_label = cross_validation.train_test_split(
    train_data, train_label, test_size=0.1)

m_classifiers = load_classifiers()
###########################################
###### preditct and show the result #######
###########################################
test_realdata = featureOf_TestinReal
predictResinReal = PrediectinAllClassifiers(m_classifiers, test_realdata)
m_predictMode = ModethePredict(test_realdata, predictResinReal)
PlotTestSeqandPredictRes(m_normalized_testdata['accelerometerX'],
                         m_predictMode, 'MODE')
df = pd.DataFrame(m_predictMode)
df = df.T
df.to_csv("../prefile", index=False, header=False)
コード例 #4
0
train_data, test_data, train_label, test_label = cross_validation.train_test_split(
    train_data, train_label, test_size=0.5)
TraininAllClassifiers(train_data, train_label, test_data, test_label)

###########################################
###### preditct and show the result #######
###########################################
# no need to reshape test data and predict
test_data = featureOfTest

try:
    #notexist
    predictRes
except NameError:
    predictRes = PrediectinAllClassifiers(test_data)
else:
    print "Predict has been extracted!"


# get the mode of different classifiers, present a vote function
def ModethePredict():
    from scipy.stats import mode
    predictMode = []
    for i in range(len(test_data)):
        predictMode.append(
            mode([  #predictRes['LR'][i],
                predictRes['KNN']
                [i],  #predictRes['KNN'][i],predictRes['KNN'][i],
                predictRes['RF'][i],
                predictRes['GBDT'][i]
コード例 #5
0
    for i in range(len(test_data)):
        predictMode.append(
            mode([  #predictRes['LR'][i],
                predictRes['KNN']
                [i],  #predictRes['KNN'][i],predictRes['KNN'][i],
                predictRes['RF'][i],
                predictRes['GBDT'][i]  #,predictRes['GBDT'][i]
            ])[0][0])
    return predictMode


try:
    notexist
    predictRes
except NameError:
    predictRes = PrediectinAllClassifiers(test_naivedata)
else:
    print "Predict has been extracted!"
m_predictMode = ModethePredict(test_naivedata, predictRes)
PlotTestSeqandPredictRes(
    m_normalized_traindata.loc[121200:149000]['accelerometerX'], m_predictMode,
    'MODE')

try:
    notexist
    predictResinReal
except NameError:
    print "testing in real test data:"
    predictResinReal = PrediectinAllClassifiers(test_realdata)
else:
    print "Predict has been extracted!"