print '\nTraining Classifiers:\n' # forest_cls, svm_cls, rbf_cls, ada_cls, lr_cls = clf.train_classifiers(tweets_features,train_labels) forest_cls, svm_cls, lr_cls, ada_cls = clf.train_classifiers( tweets_features, train_labels) ''' Create results dataset from classifiers. Where each attribute is a classifier and each row corresponds to the classification of a tweet according to each classifier. ''' print '\nCreating Train set for super classifier ... ' test_tweet_trans = vectorizer.transform(test_tweets) test_tweet_trans = test_tweet_trans.toarray() # classifiers = (forest_cls, svm_cls, rbf_cls, ada_cls, lr_cls) classifiers = (forest_cls, svm_cls, lr_cls, ada_cls) train_results = clf.test_classifiers(test_tweet_trans, test_labels, classifiers) ''' Train the super classifier on the test set ''' xmlTestFile = '../DATA/general-tweets-test1k.xml' tweets = xml.readXMLTest(xmlTestFile) tokenized_tweets = [] tweetids = [] for tweet in tweets: tokenized_tweets.append(ut.tokenize(tweet.content, tweet.polarity)) tweetids.append(tweet.id) tweets = [] labels = []
''' print '\nTraining Classifiers:\n' # forest_cls, svm_cls, rbf_cls, ada_cls, lr_cls = clf.train_classifiers(tweets_features,train_labels) forest_cls, svm_cls, lr_cls, ada_cls = clf.train_classifiers(tweets_features, train_labels) ''' Create results dataset from classifiers. Where each attribute is a classifier and each row corresponds to the classification of a tweet according to each classifier. ''' print '\nCreating Train set for super classifier ... ' test_tweet_trans = vectorizer.transform(test_tweets) test_tweet_trans = test_tweet_trans.toarray() # classifiers = (forest_cls, svm_cls, rbf_cls, ada_cls, lr_cls) classifiers = (forest_cls, svm_cls, lr_cls, ada_cls) train_results = clf.test_classifiers(test_tweet_trans, test_labels, classifiers) ''' Train the super classifier on the test set ''' print '\nCreating Test set for super classifier ... ' val_tweet_trans = vectorizer.transform(validation_tweets) val_tweet_trans = val_tweet_trans.toarray() test_results = clf.test_classifiers(val_tweet_trans, validation_labels, classifiers) ''' Now we have a train_results and test_results. Lets train and test a super classifier ''' print '\nTraining super classifier ... ' super_clf = clf.rbf_classifier(train_results, test_labels)
print '\nTraining Classifiers:\n' # forest_cls, svm_cls, rbf_cls, ada_cls, lr_cls = clf.train_classifiers(tweets_features,train_labels) forest_cls, svm_cls, lr_cls, ada_cls = clf.train_classifiers( tweets_features, train_labels) ''' Create results dataset from classifiers. Where each attribute is a classifier and each row corresponds to the classification of a tweet according to each classifier. ''' print '\nCreating Train set for super classifier ... ' test_tweet_trans = vectorizer.transform(test_tweets) test_tweet_trans = test_tweet_trans.toarray() # classifiers = (forest_cls, svm_cls, rbf_cls, ada_cls, lr_cls) classifiers = (forest_cls, svm_cls, lr_cls, ada_cls) train_results = clf.test_classifiers(test_tweet_trans, test_labels, classifiers) ''' Train the super classifier on the test set ''' print '\nCreating Test set for super classifier ... ' val_tweet_trans = vectorizer.transform(validation_tweets) val_tweet_trans = val_tweet_trans.toarray() test_results = clf.test_classifiers(val_tweet_trans, validation_labels, classifiers) ''' Now we have a train_results and test_results. Lets train and test a super classifier ''' print '\nTraining super classifier ... ' super_clf = clf.rbf_classifier(train_results, test_labels)
''' print '\nTraining Classifiers:\n' # forest_cls, svm_cls, rbf_cls, ada_cls, lr_cls = clf.train_classifiers(tweets_features,train_labels) forest_cls, svm_cls, lr_cls, ada_cls = clf.train_classifiers(tweets_features, train_labels) ''' Create results dataset from classifiers. Where each attribute is a classifier and each row corresponds to the classification of a tweet according to each classifier. ''' print '\nCreating Train set for super classifier ... ' test_tweet_trans = vectorizer.transform(test_tweets) test_tweet_trans = test_tweet_trans.toarray() # classifiers = (forest_cls, svm_cls, rbf_cls, ada_cls, lr_cls) classifiers = (forest_cls, svm_cls, lr_cls, ada_cls) train_results = clf.test_classifiers(test_tweet_trans, test_labels, classifiers) ''' Train the super classifier on the test set ''' xmlTestFile = '../DATA/general-tweets-test1k.xml' tweets = xml.readXMLTest(xmlTestFile) tokenized_tweets = [] tweetids = [] for tweet in tweets: tokenized_tweets.append(ut.tokenize(tweet.content, tweet.polarity)) tweetids.append(tweet.id) tweets = []