コード例 #1
0
def index():
    f = request.files['image']
    result = dict(
        image=f.filename,
        classification=classify_image(f),
    )
    return jsonify(result)
コード例 #2
0
def download_image(url, image_url):
    c.execute("SELECT * FROM urls WHERE url=?", (url, ))
    databse_url = c.fetchone()
    if databse_url is None:
        # Download image
        print("Downloading url: {}".format(url))
        my_folder = args.save_dir
        if not os.path.exists(my_folder):
            os.makedirs(my_folder)
        parsed_url = urlparse(image_url)
        image_name = os.path.basename(parsed_url.path)
        img_data = requests.get(image_url).content
        with open(my_folder + image_name, 'wb') as handler:
            handler.write(img_data)
        time.sleep(0.2)
        # Insert image into sqlite3, so we do not download it again
        c.execute("INSERT INTO urls ('url', 'image_name') VALUES ('{}', '{}')".
                  format(url, image_name))
        # Classify image
        classified_image = classify_image(my_folder + image_name)
        if classified_image:
            c.execute(
                "INSERT INTO classified ('url_id', 'gender', 'gender_conf', 'age', 'age_conf') VALUES ({}, {}, '{}', {}, '{}')"
                .format(c.lastrowid, classified_image['gender'],
                        classified_image['genderprediction'],
                        classified_image['age'],
                        classified_image['ageprediction']))
        conn.commit()
        return True
    else:
        return False
コード例 #3
0
def process_block_queue(lock, block_queue, dst_queue, full_image_name,
                        assess_quality, stretch_params, white_balance, tds,
                        im_metadata):
    '''
    Function run by each process. Will process blocks placed in the block_queue until the 'STOP' command is reached.
    '''
    # Parse input arguments
    lower, upper, wb_reference, bp_reference = stretch_params
    wb_reference = np.array(wb_reference, dtype=np.float)
    bp_reference = np.array(bp_reference, dtype=np.float)
    image_type = im_metadata[0]

    for block_indices in iter(block_queue.get, 'STOP'):

        x, y, read_size_x, read_size_y = block_indices
        # Load block data with gdal (offset and block size)
        lock.acquire()
        src_ds = gdal.Open(full_image_name, gdal.GA_ReadOnly)
        image_data = src_ds.ReadAsArray(x, y, read_size_x, read_size_y)
        src_ds = None
        lock.release()

        # Restructure raster for panchromatic images:
        if image_data.ndim == 2:
            image_data = np.reshape(image_data, (1, read_size_y, read_size_x))

        # Calculate the quality score on an arbitrary band
        if assess_quality:
            quality_score = pp.calc_q_score(image_data[0])
        else:
            quality_score = 1.
        # Apply correction to block based on earlier histogram analysis (if applying correction)
        # Converts image to 8 bit by rescaling lower -> 1 and upper -> 255
        image_data = pp.rescale_band(image_data, lower, upper)
        if white_balance:
            # Applies a white balance correction
            image_data = pp.white_balance(image_data, wb_reference,
                                          np.amax(wb_reference))

        # Segment image
        segmented_blocks = segment_image(image_data, image_type=image_type)

        # Classify image
        classified_block = classify_image(image_data, segmented_blocks, tds,
                                          im_metadata, wb_reference,
                                          bp_reference)

        # Add the pixel counts from this classified split to the
        #   running total.
        pixel_counts_block = utils.count_features(classified_block)

        # Pass the data back to the main thread for writing
        dst_queue.put(
            (quality_score, pixel_counts_block, x, y, classified_block))

    dst_queue.put(None)
コード例 #4
0
def upload():
    # Get the name of the uploaded user_file
    user_file = request.files['file']
    # Check if the user_file is one of the allowed types/extensions
    if user_file and allowed_file(user_file.filename):
        # Make the filename safe, remove unsupported chars
        filename = user_file.filename
        # Move the user_file form the temporal folder to
        # the upload folder we setup
        file_path = os.path.join(webapp.config['UPLOAD_FOLDER'], filename)
        user_file.save(file_path)
        prediction_list = classify_image(file_path)
        print prediction_list
        return render_template('classify.html', prediction=prediction_list, filename=filename)
    else:
        return render_template('index.html')
コード例 #5
0
def predict():
    labels = []
    if 'file' not in request.files:
        flash('No file part')
        return redirect(request.url)
    file = request.files['file']
    # if user does not select file, browser also
    # submit an empty part without filename
    if file.filename == '':
        flash('No selected file')
        return redirect(request.url)
    if file and allowed_file(file.filename):
        filename = secure_filename(file.filename)
        filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
        file.save(filepath)

    labels = classify.classify_image(filepath)
    return str(labels)
コード例 #6
0
ファイル: text.py プロジェクト: cjacoby/robotwedding
def main(args):
    if not args.text:
        print("No text to display.")
        return

    img_gen = camera.rpi.generate_capture()
    image = next(img_gen)
    img_gen.close()

    import classify

    classification = classify.classify_image(image)

    char_width = int(args.width / 6)
    lines = textwrap.wrap(classification, char_width)

    virtual = viewport(args.device, width=args.device.width, height=args.height)

    with canvas(virtual) as draw:
        for i, line in enumerate(lines):
            draw.text((0, i * 12), text=line, fill="white")

    input("Please Enter to close")
コード例 #7
0
	classify_func=get_classify_func()
	print 'generating probabilty model...'
	pro_model = generate_probability_model(relation_pairs_path,class_int_dict)
	
	print 'combining these two models'
	test_path='test.jpg'
	test_name=test_path.split('.')[0]
	images=get_object_images(test_path,ishape)
	last_object=None
	for i in xrange(len(images)):
		img = numpy.asarray(images[i], dtype='float64') / 256.
		#  print img.shape
		if(img.shape != (ishape[0],ishape[1],3)):
			continue
		img = img.swapaxes(0,2).swapaxes(1,2).reshape(1,3,ishape[0],ishape[1])
		y_pred,p_y_given_x=classify_image(image=img,classify_func=classify_func)
		y_pred=y_pred[0]
		p_y_given_x=p_y_given_x[0]
		if(p_y_given_x[y_pred]<threshold_p_y_given_x):
			continue
		print 'deep learning model implies this is:\n',image_classes[y_pred]
		if(last_object==None):
			images[i].save(test_name+'_output_object_'+str(i)+'_'+image_classes[y_pred]+'.jpg')
			last_object=y_pred
		else:
			final_p_y_given_x=p_y_given_x + model_factor * pro_model[last_object]
			p_dict={final_p_y_given_x[i]:i for i in xrange(len(final_p_y_given_x))}
			max_value=max(final_p_y_given_x)
			if(max_value<threshold_p_y_given_x):
				continue
			final_y_pred=p_dict[max_value]	
コード例 #8
0
ファイル: ossp_process.py プロジェクト: XiaoGongWei/OSSP
# OSSP Process
コード例 #9
0
    elif args.function == 3:
        # 使用大类训练好的模型对每个大类中的小类进行分类器的训练
        # 比赛数据训练集路径(按小类划分)
        evaluation_train_path = args.train_path
        # 比赛数据测试集路径(按小类划分)
        evaluation_test_path = args.test_path
        # 获取训练集和测试集文件列表
        train_kind_lists = get_file_list(evaluation_train_path)
        test_kind_lists = get_file_list(evaluation_test_path)
        # 训练模型
        train_subclass(train_kind_lists, test_kind_lists, IMAGE_SIZE, EPOCHS)

    if args.classify == 1:
        # 对图片进行批量分类
        print('[INFO] start...')
        time_start = time.time()
        # 顶层类型模型的地址
        top_model_path = 'models/evaluation_top_model.h5'
        # 读取用于顶层分类的模型
        top_model = load_model(top_model_path)
        # 需分类的图片路径
        classify_image_path = args.test_path
        image_lists = load_test_image(classify_image_path, IMAGE_SIZE)
        # 开始送入模型分类
        classify_image(top_model, image_lists, KIND_LISTS)
        time_end = time.time()
        print('运行用时:{}'.format(time_end - time_start))
    elif args.classify == 2:
        # 对单张图片进行分类
        classify_one_image_path = args.test_path
        classify_one_image(classify_one_image_path, IMAGE_SIZE, KIND_LISTS)
コード例 #10
0
def classify_and_fingerprint_dresses(path_to_image_file):
    #pdb.set_trace()
    print(
        "in fingerPrint2:classify_and_fingerprint_dresses:path_to_image_file: "
        + str(path_to_image_file))
    REMOTE_FILE = False
    item_found = False
    fingerprint = ""
    classification_dict = {}
    #read arg from command line if none given to function
    if path_to_image_file is not None:
        PATH_TO_FILE = path_to_image_file
    #else:
    #wtf is supposed to happen here - who is calling this from command line??

    #we want to be able to read URL as well as local file path
    if "://" in path_to_image_file:
        FILENAME = path_to_image_file.split('/')[-1].split('#')[0].split(
            '?')[0]
        res = urllib.urlretrieve(PATH_TO_FILE, FILENAME)
        PATH_TO_FILE = FILENAME
        REMOTE_FILE = True

    #pdb.set_trace()
    #main prog starts here
    img = cv2.imread(PATH_TO_FILE)
    roi = []
    classification_dict = classify.classify_image(img)
    BB_coordinates = classification_dict[
        "/home/www-data/web2py/applications/fingerPrint/modules/dressClassifier001.xml"]
    if len(BB_coordinates) > 0:
        if BB_coordinates[0] is not None:
            item_found = True
            roi = crop_image_to_BB(img, BB_coordinates[0])
        else:
            roi = img
            BB_coordinates = [[0, 0, 0, 0]]
            print(
                "in fingerPrint2.py: len(BB_coordinates)>0 but BB[0] is None -- REALLY WEIRD:"
            )
            print(BB_coordinates)

    else:
        #        roi = None  #if no BB was formed , don't return an answer!!!!
        print(
            "in fingerPrint2.py:bad roi (could not crop?)-using entire img - len(BB)!>0"
        )
        roi = img
        BB_coordinates = [[0, 0, 0, 0]]
    if roi is not None:
        fingerprint = fp(roi)
    else:
        print(
            "in fingerPrint2.py:bad roi (could not crop?) - using entire img (again)"
        )
        fingerprint_length = 56
        fingerprint = [0 for x in range(fingerprint_length)]
        fingerprint[0] = -1
        print("in fingerPrint2.py:fp=" + str(fingerprint))

    if REMOTE_FILE:
        os.remove(PATH_TO_FILE)

    # right now, we're only doing shirts, so it's binary
    # 0 - nothing found, 1 - at least one shirt found.
    # even within this simplified case, still need to figure out
    # how to deal with multiple shirts in an image
    classification_list = []
    if item_found:
        classification_list.append(2)
    else:
        classification_list.append(0)

    print('in fingerPrint2.py:classify_and_fingerprint_dresses:fingerprint=' +
          str(fingerprint))
    print('in fingerPrint2.py:classify_and_fingerprint_dresses:BB=' +
          str(BB_coordinates))
    return classification_list, fingerprint, BB_coordinates
コード例 #11
0
def main():
    # Set Up Arguments
    parser = argparse.ArgumentParser()
    parser.add_argument("input_dir",
                        help='''directory path containing date directories of 
                        images to be processed''')
    parser.add_argument("image_type",
                        type=str,
                        choices=["srgb", "wv02_ms", "pan"],
                        help="image type: 'srgb', 'wv02_ms', 'pan'")
    parser.add_argument("training_dataset", help="training data file")
    parser.add_argument("--training_label",
                        type=str,
                        default=None,
                        help="name of training classification list")
    parser.add_argument("-o",
                        "--output_dir",
                        type=str,
                        default=None,
                        help="directory to place output results.")
    parser.add_argument(
        "-s",
        "--splits",
        metavar='int',
        type=int,
        default=1,
        help="number of subdividing splits to preform on raw image")
    parser.add_argument("-p",
                        "--parallel",
                        metavar='int',
                        type=int,
                        default=1,
                        help='''number of processing threads to create.''')
    parser.add_argument("-v",
                        "--verbose",
                        action="store_true",
                        help="display text information and progress")
    parser.add_argument("-e",
                        "--extended_output",
                        action="store_true",
                        help='''Save additional data:
                                    1) classified image (png)
                                    2) classified results (csv)
                        ''')
    parser.add_argument(
        "-c",
        "--nostretch",
        action="store_false",
        help="Do not apply a histogram stretch image correction to input.")

    # Parse Arguments
    args = parser.parse_args()

    # System filepath that contains the directories or files for batch processing
    user_input = args.input_dir
    if os.path.isdir(user_input):
        src_dir = user_input
        src_file = ''
    elif os.path.isfile(user_input):
        src_dir, src_file = os.path.split(user_input)
    else:
        raise IOError('Invalid input')
    # Image type, choices are 'srgb', 'pan', or 'wv02_ms'
    image_type = args.image_type
    # File with the training data
    tds_file = args.training_dataset
    # Default tds label is the image type
    if args.training_label is None:
        tds_label = image_type
    else:
        tds_label = args.training_label
    # Default output directory (if not provided)
    if args.output_dir is None:
        dst_dir = os.path.join(src_dir, 'classified')
    else:
        dst_dir = args.output_dir
    if not os.path.isdir(dst_dir):
        os.makedirs(dst_dir)

    num_splits = args.splits
    num_threads = args.parallel
    verbose = args.verbose
    extended_output = args.extended_output
    stretch = args.nostretch

    # For Ames OIB Processing:
    assess_quality = True
    # Set a default quality score until this value is calculated
    quality_score = 1.

    # Directory where temporary files are saved
    if num_splits > 1:
        working_dir = os.path.join(src_dir, 'splits')
    else:
        working_dir = None

    # Prepare a list of images to be processed based on the user input
    #   list of task objects based on the files in the input directory.
    #   Each task is an image to process, and has a subtask for each split
    #   of that image.
    task_list = utils.create_task_list(os.path.join(src_dir, src_file),
                                       dst_dir, num_splits)
    # Load Training Data
    tds = utils.load_tds(tds_file, tds_label)

    for task in task_list:

        # ASP: Restrict processing to the frame range
        # try:
        #     frameNum = getFrameNumberFromFilename(file)
        # except Exception, e:
        #     continue
        # if (frameNum < args.min_frame) or (frameNum > args.max_frame):
        #     continue

        # Skip this task if it is already marked as complete
        if task.is_complete():
            continue

        # If the image has not yet been split or if no splitting was requested,
        # proceed to the preprocessing step.
        image_name = task.get_id()
        if not task.is_split() or num_splits == 1:
            image_data, im_info = prepare_image(src_dir,
                                                image_name,
                                                image_type,
                                                output_path=working_dir,
                                                number_of_splits=num_splits,
                                                apply_correction=stretch,
                                                verbose=verbose)

            if assess_quality:
                if verbose:
                    print("Calculating image quality score...")
                # Calculate the quality score for this image:
                quality_score = utils.calc_q_score(image_data[1])

            block_dims = im_info[0]
            image_date = im_info[1]

        pixel_counts = [0, 0, 0, 0, 0]
        classified_image = []
        # Loop until all subtasks are complete.
        # Breaks when task.get_next_subtask() returns None (all subtasks complete)
        #   or if the task is complete.
        while True:

            if task.is_complete():
                break
            elif task.has_subtask():
                subtask = task.get_next_subtask()

                if subtask is None:
                    break
                # If there is a subtask, the image data is stored in a split on the
                #   drive. Subtask == {} when there are no subtasks.
                image_data = os.path.join(working_dir, subtask) + '.h5'
                with h5py.File(image_data, 'r') as f:
                    block_dims = f.attrs.get("Block Dimensions")
                    image_date = f.attrs.get("Image Date")
            else:
                subtask = task.get_id()

            # Segment image
            seg_time = time.clock()
            if verbose:
                print("Segmenting image: %s" % subtask)
            image_data, segmented_blocks = segment_image(image_data,
                                                         image_type=image_type,
                                                         threads=num_threads,
                                                         verbose=verbose)
            if verbose:
                print("Segment finished: %s: %f" %
                      (subtask, time.clock() - seg_time))

            # Classify image
            class_time = time.clock()
            if verbose:
                print("Classifying image: %s" % subtask)
            classified_blocks = classify_image(image_data,
                                               segmented_blocks,
                                               tds, [image_type, image_date],
                                               threads=num_threads,
                                               verbose=verbose)
            if verbose:
                print("Classification finished: %s: %f" %
                      (subtask, time.clock() - class_time))

            # Hold onto the output of this subtask
            clsf_split = utils.compile_subimages(classified_blocks,
                                                 block_dims[0], block_dims[1])

            # Save the results to the temp folder if there is more than 1 split
            if num_splits > 1:
                with h5py.File(
                        os.path.join(working_dir, subtask + '_classified.h5'),
                        'w') as f:
                    f.create_dataset('classified',
                                     data=clsf_split,
                                     compression='gzip',
                                     compression_opts=3)

            # Add the pixel counts from this classified split to the
            #   running total.
            pixel_counts_split = utils.count_features(clsf_split)
            for i in range(len(pixel_counts)):
                pixel_counts[i] += pixel_counts_split[i]

            # Mark this subtask as complete. This sets task.complete to True
            #   if there are no subtasks.
            task.update_subtask(subtask)

        # Writing the results to a sqlite database. (Only works for
        #   a specific database structure that has already been created)
        # db_name = 'ImageDatabase.db'
        # db_dir = '/media/sequoia/DigitalGlobe/'
        # image_name = task.get_id()
        # image_name = os.path.splitext(image_name)[0]
        # image_id = image_name.split('_')[2]
        # part = image_name.split('_')[5]
        # utils.write_to_database(db_name, db_dir, image_id, part, pixel_counts)

        # Create a sorted list of the tasks. Then create the correct filename
        #   for each split saved on the drive.
        # Compile the split images back into a single image
        if num_splits > 1:
            if verbose:
                print("Recompiling: %s" % task.get_id())
            clsf_splits = []
            task_list = task.get_tasklist()
            task_list.sort()
            for task_id in task_list:
                cname = os.path.join(working_dir, task_id + "_classified.h5")
                clsf_splits.append(cname)
            classified_image = utils.stitch(clsf_splits)
        else:
            classified_image = clsf_split

        # Open input file to read metadata/projection
        src_ds = gdal.Open(os.path.join(src_dir, image_name))

        input_xsize = src_ds.RasterXSize
        input_ysize = src_ds.RasterYSize

        # Trim output image to correct size
        classified_image = classified_image[:input_ysize, :input_xsize]

        # Save the classified image output as a geotiff
        fileformat = "GTiff"
        image_name = os.path.splitext(image_name)[0]
        dst_filename = os.path.join(dst_dir, image_name + '_classified.tif')
        driver = gdal.GetDriverByName(fileformat)
        dst_ds = driver.Create(dst_filename,
                               xsize=input_xsize,
                               ysize=input_ysize,
                               bands=1,
                               eType=gdal.GDT_Byte,
                               options=["TILED=YES", "COMPRESS=LZW"])

        # Transfer the metadata from input image
        # dst_ds.SetMetadata(src_ds.GetMetadata())
        # Transfer the input projection
        dst_ds.SetGeoTransform(
            src_ds.GetGeoTransform())  ##sets same geotransform as input
        dst_ds.SetProjection(
            src_ds.GetProjection())  ##sets same projection as input

        # Write information to output
        dst_ds.GetRasterBand(1).WriteArray(classified_image)

        # Close dataset and write to disk
        dst_ds = None
        src_ds = None

        # Write extra data (total pixel counts and quality score to the database (or csv)
        output_csv = os.path.join(dst_dir, image_name + '_md.csv')
        with open(output_csv, "wb") as csvfile:
            writer = csv.writer(csvfile)
            writer.writerow([
                "Quality Score", "White Ice", "Gray Ice", "Melt Ponds",
                "Open Water"
            ])
            writer.writerow([
                quality_score, pixel_counts[0], pixel_counts[1],
                pixel_counts[2], pixel_counts[3]
            ])

        # Save color image for viewing
        if extended_output:
            utils.save_color(classified_image,
                             os.path.join(dst_dir, image_name + '.png'))

        # Remove temp folders
        if working_dir is not None:
            if os.path.isdir(working_dir):
                shutil.rmtree(working_dir)

        if verbose:
            print("Done")