def prediction(): if request.method == 'POST': file = request.files['audiofile'] path = os.path.join(app.config['UPLOAD_FOLDER'], file.filename) file.save(path) melSpec = submitAudio(path) os.remove(path) results = ci.classify_image(melSpec) # if melSpec not None: # prediction = getPrediction( './audio.jpg') return results else: return "hello"
def detect_image(self): path = "pt.png" cap = None if False == self.is_enabled: cap = cv2.VideoCapture(0) ret, self.frame = cap.read() cv2.imwrite(path, self.frame) if cap != None: cap.release() cv2.destroyAllWindows() c_img = classify_image() s = self.__detected_object_to_answer(c_img.detect_image(path)) os.remove(path) if s == "": return "I am sorry but I don\'t know." return "This is " + s
print(start_time - time.time(), "secs to start.") #if current_event["Event"] == "Sleep in bed" and start_time > time.time(): #set_angle(35, servo_channel, pwm) while (time_left > 0): ret, frame = cap.read() #cv2.imshow('frame', frame ) if time.time() - start_time >= time_interval: frame = frame[:, :, ::-1] #change color from BGR to RGB image = Image.fromarray(frame) image = image.resize((width, height)) # resize image to (224, 224) set_angle(90, servo_channel, pwm) label_id1, prob1 = classify_image(interpreter1, image) set_angle(35, servo_channel, pwm) label_id2, prob2 = classify_image(interpreter2, image) if labels2[label_id2][2:] == "sleep in bed": classification_result = "sleep in bed" else: classification_result = labels1[label_id1][2:] start_time = time.time() time_left -= time_interval # Return the classification label of the image. #classification_result = labels1[label_id1][2:] send_msg = [ "classifiedResult", { "origin": current_event, "classified_result": classification_result,
print 'Starting road detector' if (len(sys.argv) == 3): if (sys.argv[1] == "train"): train.train_model(sys.argv[2]) elif (sys.argv[1] == "test"): image_path = sys.argv[2] files = os.listdir(image_path) files = list(filter(lambda x: 'jpg' in x and 'aux' not in x, files)) filenames = list(map((lambda x: re.sub('\.jpg$', '', x)), files)) for file in filenames: print '-----------------' print 'classifying image ' + file path = image_path + file + '.jpg' result = classify_image.classify_image(path) cv2.imwrite(file + 'raw.jpg', result) print 'processing image ' + file processed_image = extract_paths.extract_paths(result) cv2.imwrite(file + 'processed.jpg', processed_image) elif (sys.argv[1] == "post-process"): image_path = sys.argv[2] files = os.listdir(image_path) files = list(filter(lambda x: 'jpg' in x and 'aux' not in x, files)) filenames = list(map((lambda x: re.sub('\.jpg$', '', x)), files)) for file in filenames: print '-----------------' print 'processing image ' + file path = image_path + file + '.jpg' input_image_from_file = cv2.imread(path, 0) processed_image = extract_paths.extract_paths(
def hello(): image_url = request.forms.get('image_url') returnStr = "" for i in CIMG.classify_image(image_url): returnStr += i + "<br />" return returnStr + "<br />" + "<img src=" + image_url + ">"
label_path = "models_and_labels./labels2.txt" # Read class labels. labels = load_labels(label_path) interpreter = Interpreter(model_path) print("Model Loaded Successfully.") interpreter.allocate_tensors() _, height, width, _ = interpreter.get_input_details()[0]['shape'] print("Image Shape (", width, ",", height, ")") init_time = time.time() while (True): ret, frame = cap.read() cv2.imshow('frame', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break if time.time() - init_time >= 2: #image = Image.fromarray(cv2.cvtColor(frame,cv2.COLOR_BGR2RGB)) # convert opencv(frame) to PIL(image) frame = frame[:, :, ::-1] image = Image.fromarray(frame) image = image.resize((width, height)) # resize image to (224, 224) label_id, prob = classify_image(interpreter, image) init_time = time.time() # Return the classification label of the image. classification_label = labels[label_id] print("Image Label is :", classification_label, ", with Accuracy :", np.round(prob * 100, 2), "%.")
csv_path = cmdline_args.csv if cmdline_args.csv == "default": csv_path = (cmdline_args.folder + "/overview.csv") with open(csv_path) as csv_file: csv_reader = csv.reader(csv_file) line_count = 0 for row in csv_reader: if line_count == 0: line_count += 1 else: split_row = row[0].split(';') if split_row[1] != 'None' and cmdline_args.skip: line_count += 1 continue image_name = f"classified_{line_count}b.jpg" image_path = (cmdline_args.folder + "\\" + split_row[0] + ".ndpi").replace("/", "\\").replace("\\\\", "\\") annotation_path = (cmdline_args.folder + "\\" + split_row[1]).replace("/", "\\").replace( "\\\\", "\\") mask_path = (cmdline_args.folder + "\\" + split_row[2]).replace("/", "\\").replace("\\\\", "\\") classify_image(model, device, image_path, mask_path, annotation_path, f"{output_folder}\\{image_name}", patch_size) line_count += 1
#print("Model Loaded Successfully.") interpreter.allocate_tensors() _, height, width, _ = interpreter.get_input_details()[0]['shape'] #print("Image Shape (", width, ",", height, ")") interpreter2.allocate_tensors() _, height, width, _ = interpreter2.get_input_details()[0]['shape'] # Load an image to be classified. image = Image.open(img_folder + "dog.jpg").convert('RGB').resize( (width, height)) # Classify the image. time1 = time.time() label_id, prob = classify_image(interpreter, image) label_id2, prob2 = classify_image(interpreter2, image) time2 = time.time() classification_time = np.round(time2 - time1, 3) #print("Classificaiton Time =", classification_time, "seconds.") # Read class labels. labels = load_labels(label_path) labels2 = load_labels(label2_path) # Return the classification label of the image. classification_label = labels[label_id].split(" ")[1] classification_label2 = labels2[label_id2].split(" ")[1] print("Image Label is :", classification_label, ", with Accuracy :", np.round(prob * 100, 2), "% by interpreter1") print("Image Label is :", classification_label2, ", with Accuracy :", np.round(prob2 * 100, 2), "% by interpreter2")