コード例 #1
0
def calculate_poses(option: Option, nn_classifier: ClassNN, svm_classifier: ClassSVM):
    print('Calculating poses using nn')

    # Recalculate all poses and get confidence
    for classInfo in list_classes:
        folder = classInfo['folderPath']
        for root, _, files in os.walk(folder):
            for file in files:
                full_path = os.path.join(root, file)
                ext = ClassUtils.get_filename_extension(full_path)

                if '_rawdata' in file and ext == '.json':
                    print('Processing file: {0}'.format(full_path))

                    with open(full_path, 'r') as f:
                        file_txt = f.read()

                    file_json = json.loads(file_txt)
                    list_poses = file_json['listPoses']

                    for pose in list_poses:
                        angles = pose['angles']
                        transformed_points = pose['transformedPoints']

                        # Using transformed points and angles
                        list_desc = list()
                        list_desc += ClassUtils.get_flat_list(transformed_points)

                        # Convert to numpy
                        list_desc_np = np.asanyarray(list_desc, np.float)

                        if option == Option.NN:
                            result = nn_classifier.predict_model_fast(list_desc_np)
                        else:
                            result = svm_classifier.predict_model(list_desc_np)

                        pose['class'] = int(result['classes'])
                        pose['probabilities'] = result['probabilities'].tolist()

                    # Writing again into file
                    file_txt = json.dumps(file_json, indent=4)
                    new_full_path = ClassUtils.change_ext_training(full_path,
                                                                   '{0}_posedata'.format(option.value))

                    with open(new_full_path, 'w') as f:
                        f.write(file_txt)

                    # Done

    print('Done processing elements')
コード例 #2
0
def apply_classifier(option: Option,
                     base_data_1,
                     base_data_2,
                     instance_nn=None,
                     hmm_models=None,
                     accuracy=0,
                     real_accuracy=0):
    # Apply classification for each item!
    for item in list_classes:
        folder = item['folderPath']
        for root, _, files in os.walk(folder):
            for file in files:
                full_path = os.path.join(root, file)

                if '{0}_{1}_actiondata'.format(base_data_1,
                                               base_data_2) in full_path:
                    with open(full_path, 'r') as f:
                        json_txt = f.read()

                    json_data = json.loads(json_txt)
                    list_actions = json_data['listActions']

                    if option == Option.HMM:
                        res = predict_data_hmm(list_actions, hmm_models)
                    else:
                        words = get_bow_descriptors(list_actions)
                        res = instance_nn.predict_model_fast(words)

                    obj_to_write = {
                        'class': int(res['classes']),
                        'probabilities': res['probabilities'].tolist(),
                        'modelAccuracy': accuracy,
                        'realAccuracy': real_accuracy
                    }

                    obj_txt = json.dumps(obj_to_write, indent=4)
                    new_filename = ClassUtils.change_ext_training(
                        full_path, '{0}_ensembledata'.format(option.value))

                    with open(new_filename, 'w') as f:
                        f.write(obj_txt)

                    # Done Writing

    print('Done!')
コード例 #3
0
def process_list_partial(filename, zone_data, idx_cls):
    # Loading json data from filename
    with open(filename, 'r') as f:
        person_txt = f.read()

    person = json.loads(person_txt)
    list_poses = person['listPoses']

    # Create partial list of ele
    moving = True

    index = 0
    num_poses_future = 5
    min_distance_x = 100
    min_distance_y = 100
    list_poses_action = list()
    list_poses_partial = list()

    while index < len(list_poses):
        pose = list_poses[index]
        remaining = len(list_poses) - index - 1

        pos = pose['globalPosition']

        if moving:
            valid = True
            if remaining >= num_poses_future:
                count = 0
                count_min = 0

                for i in range(index + 1, index + num_poses_future):
                    count += 1
                    pos_future = list_poses[index +
                                            num_poses_future]['globalPosition']

                    distance_x = math.fabs(pos[0] - pos_future[0])
                    distance_y = math.fabs(pos[1] - pos_future[1])
                    if distance_x < min_distance_x and distance_y < min_distance_y:
                        count_min += 1

                # All points must be in a range
                if count == count_min:
                    valid = False

            if not valid:
                if len(list_poses_partial) != 0:
                    # Check total moving changes
                    # Using movement variations
                    _, list_action_mov = ClassDescriptors.get_moving_action_poses(
                        list_poses_partial)
                    print('Total action moving: {0}'.format(
                        len(list_action_mov)))

                    for idx_act, action_mov in enumerate(list_action_mov):
                        if idx_act == len(action_mov) - 1:
                            # Take last action as num_pose_future position
                            final_pos = list_poses[
                                index + num_poses_future]['globalPosition']
                        else:
                            # Take final pos as last item
                            final_pos = action_mov[-1]['globalPosition']

                        initial_pos = action_mov[0]['globalPosition']

                        # Get if action ends in zone
                        # Except for walk, loitering actions
                        if idx_cls == 2 or idx_cls == 6:
                            in_zone = False
                            in_zone_before = False
                        else:
                            in_zone = is_point_in_zone(final_pos, zone_data)
                            # Get if action init in zone
                            in_zone_before = is_point_in_zone(
                                initial_pos, zone_data)

                        # Saving
                        list_poses_action.append({
                            'moving':
                            moving,
                            'listPoses':
                            copy.deepcopy(action_mov),
                            'finalPos':
                            final_pos,
                            'inZone':
                            in_zone,
                            'inZoneBefore':
                            in_zone_before
                        })
                        list_poses_partial.clear()

                moving = False

            list_poses_partial.append(pose)
        else:
            # Generating elements into list
            valid = True
            if remaining >= num_poses_future:
                for i in range(index + 1, index + num_poses_future):
                    pos_future = list_poses[index +
                                            num_poses_future]['globalPosition']

                    distance_x = math.fabs(pos[0] - pos_future[0])
                    distance_y = math.fabs(pos[1] - pos_future[1])

                    # Inverse
                    # If there is some point with greater distance!
                    if distance_x >= min_distance_x or distance_y >= min_distance_y:
                        valid = False
                        break

            list_poses_partial.append(pose)
            if not valid:
                final_pos = list_poses[index]['globalPosition']
                in_zone = is_point_in_zone(final_pos, zone_data)

                # New pose list
                for i in range(num_poses_future):
                    list_poses_partial.append(list_poses[index + i])

                list_poses_action.append({
                    'moving':
                    moving,
                    'listPoses':
                    copy.deepcopy(list_poses_partial),
                    'finalPos':
                    final_pos,
                    'inZone':
                    in_zone,
                    'inZoneBefore':
                    False  # In zone before does not apply
                })
                list_poses_partial.clear()

                index += num_poses_future
                moving = True

        # Iterator!
        index += 1

    if len(list_poses_partial) != 0:
        final_pos = list_poses_partial[-1]['globalPosition']
        initial_pos = list_poses_partial[0]['globalPosition']

        if moving:
            if idx_cls == 2 or idx_cls == 6:
                in_zone = False
                in_zone_before = False
            else:
                in_zone = is_point_in_zone(final_pos, zone_data)
                in_zone_before = is_point_in_zone(initial_pos, zone_data)

            _, list_action_mov = ClassDescriptors.get_moving_action_poses(
                list_poses_partial)
            for action_mov in list_action_mov:
                list_poses_action.append({
                    'moving': moving,
                    'listPoses': copy.deepcopy(action_mov),
                    'finalPos': final_pos,
                    'inZone': in_zone,
                    'inZoneBefore': in_zone_before
                })
        else:
            in_zone = is_point_in_zone(final_pos, zone_data)
            # Saving elements in partial format
            list_poses_action.append({
                'moving':
                moving,
                'listPoses':
                copy.deepcopy(list_poses_partial),
                'finalPos':
                final_pos,
                'inZone':
                in_zone,
                'inZoneBefore':
                False  # In zone before does not apply
            })
        list_poses_partial.clear()

    # Generating elements into list
    person_action = {
        'personGuid': person['personGuid'],
        'listPosesAction': list_poses_action
    }

    new_filename = ClassUtils.change_ext_training(filename, 'partialdata')

    action_txt = json.dumps(person_action, indent=4)
    with open(new_filename, 'w') as f:
        f.write(action_txt)

    # Saving list poses action for debugging
    save_list_poses_action(filename, list_poses_action, zone_data)

    print('Done!')
コード例 #4
0
def process_file_action(full_path,
                        option: Option,
                        instance_model=None,
                        hmm_models=None,
                        accuracy=0):
    with open(full_path, 'r') as f:
        json_txt = f.read()

    json_data = json.loads(json_txt)
    list_actions = list()

    list_list_poses = json_data['listPosesAction']
    for list_poses_data in list_list_poses:
        list_poses = list_poses_data['listPoses']
        moving = list_poses_data['moving']
        in_zone = list_poses_data['inZone']
        in_zone_before = list_poses_data['inZoneBefore']

        # Descriptor not moving
        if not moving:
            if option == Option.NN:
                descriptor = get_nn_descriptor(list_poses)
                descriptor_nn = np.asanyarray(descriptor, dtype=np.float)
                res = instance_model.predict_model_fast(descriptor_nn)
            elif option == Option.CNN:
                descriptor = get_cnn_descriptor_pos(list_poses)
                descriptor_nn = np.asanyarray(descriptor, dtype=np.float)
                res = instance_model.predict_model_fast(descriptor_nn)
            else:
                res = predict_data(hmm_models, list_poses)

            cls = int(res['classes'])

            if in_zone:
                cls += 4

            probabilities = res['probabilities'].tolist()
            list_prob = list()

            if in_zone:
                for i in range(4):
                    list_prob.append(0)
                list_prob += probabilities
            else:
                list_prob += probabilities
                for i in range(4):
                    list_prob.append(0)

            for i in range(4):
                list_prob.append(0)

            data_action = {
                'class': cls,
                'probabilities': list_prob,
                'count': len(list_poses)
            }
        else:
            if not in_zone and not in_zone_before:
                cls = 8
            elif in_zone and not in_zone_before:
                cls = 9
            elif not in_zone and in_zone_before:
                cls = 10
            else:
                cls = 11

            probabilities = list()
            for i in range(12):
                if i == cls:
                    probabilities.append(1)
                else:
                    probabilities.append(0)

            data_action = {
                'class': cls,
                'probabilities': probabilities,
                'count': len(list_poses)
            }

        list_actions.append(data_action)

    json_data = {'listActions': list_actions, 'accuracy': accuracy}

    # Saving full action info into list
    json_txt = json.dumps(json_data, indent=4)
    new_file_path = ClassUtils.change_ext_training(
        full_path, '{0}_actiondata'.format(option.value))

    with open(new_file_path, 'w') as f:
        f.write(json_txt)