コード例 #1
0
def plot_model(
    model: ClassyModel,
    size: Tuple[int, ...] = (3, 224, 224),
    input_key: Optional[Union[str, List[str]]] = None,
    writer: Optional["SummaryWriter"] = None,
    folder: str = "",
    train: bool = True,
) -> None:
    """Visualizes a model in TensorBoard.

    The TensorBoard writer can be either specified directly via `writer` or can
    be specified via a `folder`.

    The model can be run in training or evaluation model via the `train` argument.

    Example usage on devserver:
     - Install TensorBoard using: `sudo feature install tensorboard`
     - Start TensorBoard using: `tensorboard --port=8098 --logdir <folder>`
    """

    assert (
        writer is not None or folder != ""
    ), "must specify SummaryWriter or folder to create SummaryWriter in"
    input = get_model_dummy_input(model, size, input_key)
    if writer is None:
        writer = SummaryWriter(log_dir=folder, comment="Model graph")
    with writer:
        orig_train = model.training
        model.train(train)  # visualize model in desired mode
        writer.add_graph(model, input_to_model=(input, ))
        model.train(orig_train)
コード例 #2
0
    def test_from_checkpoint(self):
        config = get_test_task_config()
        for use_head in [True, False]:
            config["model"] = self.get_model_config(use_head)
            task = build_task(config)
            task.prepare()

            checkpoint_folder = f"{self.base_dir}/{use_head}/"
            input_args = {"config": config}

            # Simulate training by setting the model parameters to zero
            for param in task.model.parameters():
                param.data.zero_()

            checkpoint_hook = CheckpointHook(
                checkpoint_folder, input_args, phase_types=["train"]
            )

            # Create checkpoint dir, save checkpoint
            os.mkdir(checkpoint_folder)
            checkpoint_hook.on_start(task)

            task.train = True
            checkpoint_hook.on_phase_end(task)

            # Model should be checkpointed. load and compare
            checkpoint = load_checkpoint(checkpoint_folder)

            model = ClassyModel.from_checkpoint(checkpoint)
            self.assertTrue(isinstance(model, MyTestModel))

            # All parameters must be zero
            for param in model.parameters():
                self.assertTrue(torch.all(param.data == 0))
コード例 #3
0
    def test_classy_model_adapter(self):
        model = TestModel()
        classy_model = ClassyModel.from_model(model)
        # test that the returned object is an instance of ClassyModel
        self.assertIsInstance(classy_model, ClassyModel)
        # test that the returned object is also an instance of _ClassyModelAdapter
        self.assertIsInstance(classy_model, _ClassyModelAdapter)

        # test that forward works correctly
        input = torch.zeros((100, 10))
        output = classy_model(input)
        self.assertEqual(output.shape, (100, 5))

        # test that extract_features works correctly
        input = torch.zeros((100, 10))
        output = classy_model.extract_features(input)
        self.assertEqual(output.shape, (100, 20))

        # test that get_classy_state and set_classy_state work
        nn.init.constant_(classy_model.model.linear.weight, 1)
        weights = copy.deepcopy(classy_model.model.linear.weight.data)
        state_dict = classy_model.get_classy_state(deep_copy=True)
        nn.init.constant_(classy_model.model.linear.weight, 0)
        classy_model.set_classy_state(state_dict)
        self.assertTrue(torch.allclose(weights, classy_model.model.linear.weight.data))
コード例 #4
0
 def test_classy_model_adapter_properties(self):
     # test that the properties work correctly when passed to the adapter
     model = TestModel()
     input_shape = (10,)
     model_depth = 1
     classy_model = ClassyModel.from_model(
         model, input_shape=input_shape, model_depth=model_depth
     )
     self.assertEqual(classy_model.input_shape, input_shape)
コード例 #5
0
 def test_heads(self):
     model = models.resnet50(pretrained=False)
     classy_model = ClassyModel.from_model(model)
     num_classes = 5
     head = FullyConnectedHead(
         unique_id="default", in_plane=2048, num_classes=num_classes
     )
     classy_model.set_heads({"layer4": [head]})
     input = torch.ones((1, 3, 224, 224))
     self.assertEqual(classy_model(input).shape, (1, num_classes))
コード例 #6
0
    def test_train_step(self):
        # test that the model can be run in a train step
        model = models.resnet34(pretrained=False)
        classy_model = ClassyModel.from_model(model)

        config = get_fast_test_task_config()
        task = build_task(config)
        task.set_model(classy_model)
        trainer = LocalTrainer()
        trainer.train(task)
コード例 #7
0
    def from_model(cls, model: Union[nn.Module, ClassyModel]) -> "ClassyHubInterface":
        """Instantiates the ClassyHubInterface from a model.

        This function returns a hub interface based on a ClassyModel

        Args:
            model: torchhub model

        """
        if not isinstance(model, ClassyModel):
            model = ClassyModel.from_model(model)
        return cls(model=model)
コード例 #8
0
    def _validate_and_get_optimizer_params(
            self, model: ClassyModel) -> Dict[str, Any]:
        """
        Validate and return the optimizer params.

        The optimizer params are fetched from
        :fun:`models.ClassyModel.get_optimizer_params`.

        Args:
            model: The model to get the params from.

        Returns:
            A dict containing "regularized_params" and "unregularized_params".
            Weight decay will only be applied to "regularized_params".
        """
        if isinstance(model, torch.nn.parallel.DistributedDataParallel):
            optimizer_params = model.module.get_optimizer_params()
        else:
            optimizer_params = model.get_optimizer_params()

        assert isinstance(optimizer_params, dict) and set(
            optimizer_params.keys()
        ) == {
            "regularized_params",
            "unregularized_params",
        }, "get_optimizer_params() of {0} should return dict with exact two keys\
            'regularized_params', 'unregularized_params'".format(
            type(model).__name__)

        trainable_params = [
            params for params in model.parameters() if params.requires_grad
        ]
        assert len(trainable_params) == len(
            optimizer_params["regularized_params"]
        ) + len(optimizer_params["unregularized_params"]), (
            "get_optimizer_params() of {0} should return params that cover all"
            "trainable params of model".format(type(model).__name__))

        return optimizer_params
コード例 #9
0
    def _get_mock_classy_vision_model(self, trainable_params=True):
        mock_classy_vision_model = ClassyModel()

        if trainable_params:
            mock_classy_vision_model.get_optimizer_params = MagicMock(
                return_value=self._get_optimizer_params())
            mock_classy_vision_model.parameters = MagicMock(
                return_value=self._get_optimizer_params()["regularized_params"]
                + self._get_optimizer_params()["unregularized_params"])
        else:
            mock_classy_vision_model.get_optimizer_params = MagicMock(
                return_value={
                    "regularized_params": [],
                    "unregularized_params": []
                })
            mock_classy_vision_model.parameters = MagicMock(return_value=[
                param.detach() for param in
                self._get_optimizer_params()["regularized_params"] +
                self._get_optimizer_params()["unregularized_params"]
            ])

        return mock_classy_vision_model
コード例 #10
0
ファイル: my_model.py プロジェクト: YanChimpu/beauty_training
 def __init__(self):
     super().__init__()
     self.resnet = ClassyModel.from_model(resnet50())
     self.relu = nn.ReLU()
     self.linear = nn.Linear(1000, 8)