def setup(use_petsc=False, solver_type='classic', kernel_language='Python', outdir='./_output'): from clawpack import riemann if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type == 'classic': if kernel_language == 'Fortran': solver = pyclaw.ClawSolver1D(riemann.vc_advection_1D) elif kernel_language == 'Python': solver = pyclaw.ClawSolver1D( riemann.vc_advection_1D_py.vc_advection_1D) elif solver_type == 'sharpclaw': if kernel_language == 'Fortran': solver = pyclaw.SharpClawSolver1D(riemann.vc_advection_1D) elif kernel_language == 'Python': solver = pyclaw.SharpClawSolver1D( riemann.vc_advection_1D_py.vc_advection_1D) solver.weno_order = weno_order else: raise Exception('Unrecognized value of solver_type.') solver.kernel_language = kernel_language solver.limiters = pyclaw.limiters.tvd.MC solver.bc_lower[0] = pyclaw.BC.custom solver.user_bc_lower = custom_bc solver.bc_upper[0] = pyclaw.BC.custom solver.user_bc_upper = custom_bc solver.aux_bc_lower[0] = 2 solver.aux_bc_upper[0] = 2 xlower = -100.0 xupper = 100.0 mx = steps x = pyclaw.Dimension(xlower, xupper, mx, name='x') domain = pyclaw.Domain(x) num_aux = 1 num_eqn = 1 state = pyclaw.State(domain, num_eqn, num_aux) qinit(state) auxinit(state) claw = pyclaw.Controller() claw.outdir = outdir claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.tfinal = 10.0 claw.setplot = setplot claw.keep_copy = True # print claw.solution._get_solution_attribute return claw
def setup(nx=100, kernel_language='Python', use_petsc=False, solver_type='classic', weno_order=5, outdir='./_output'): import numpy as np from clawpack import riemann if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type == 'classic': if kernel_language == 'Fortran': solver = pyclaw.ClawSolver1D(riemann.advection_1D) elif kernel_language == 'Python': solver = pyclaw.ClawSolver1D(riemann.advection_1D_py.advection_1D) elif solver_type == 'sharpclaw': if kernel_language == 'Fortran': solver = pyclaw.SharpClawSolver1D(riemann.advection_1D) elif kernel_language == 'Python': solver = pyclaw.SharpClawSolver1D( riemann.advection_1D_py.advection_1D) solver.weno_order = weno_order else: raise Exception('Unrecognized value of solver_type.') solver.kernel_language = kernel_language solver.bc_lower[0] = 2 solver.bc_upper[0] = 2 x = pyclaw.Dimension('x', 0.0, 1.0, nx) domain = pyclaw.Domain(x) num_eqn = 1 state = pyclaw.State(domain, num_eqn) state.problem_data['u'] = 1. grid = state.grid xc = grid.x.centers beta = 100 gamma = 0 x0 = 0.75 state.q[0, :] = np.exp(-beta * (xc - x0)**2) * np.cos(gamma * (xc - x0)) claw = pyclaw.Controller() claw.keep_copy = True claw.solution = pyclaw.Solution(state, domain) claw.solver = solver if outdir is not None: claw.outdir = outdir else: claw.output_format = None claw.tfinal = 1.0 return claw
def setup(use_petsc=0, kernel_language='Fortran', outdir='./_output', solver_type='classic'): """ Example python script for solving the 1d Burgers equation. """ import numpy as np from clawpack import riemann if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw #=========================================================================== # Setup solver and solver parameters #=========================================================================== if solver_type == 'sharpclaw': if kernel_language == 'Python': solver = pyclaw.SharpClawSolver1D(riemann.burgers_1D_py.burgers_1D) elif kernel_language == 'Fortran': solver = pyclaw.SharpClawSolver1D(riemann.burgers_1D) else: if kernel_language == 'Python': solver = pyclaw.ClawSolver1D(riemann.burgers_1D_py.burgers_1D) elif kernel_language == 'Fortran': solver = pyclaw.ClawSolver1D(riemann.burgers_1D) solver.limiters = pyclaw.limiters.tvd.vanleer solver.kernel_language = kernel_language solver.bc_lower[0] = pyclaw.BC.periodic solver.bc_upper[0] = pyclaw.BC.periodic #=========================================================================== # Initialize domain and then initialize the solution associated to the domain #=========================================================================== x = pyclaw.Dimension('x', 0.0, 1.0, 500) domain = pyclaw.Domain(x) num_eqn = 1 state = pyclaw.State(domain, num_eqn) grid = state.grid xc = grid.x.centers state.q[0, :] = np.sin(np.pi * 2 * xc) + 0.50 state.problem_data['efix'] = True #=========================================================================== # Setup controller and controller parameters. Then solve the problem #=========================================================================== claw = pyclaw.Controller() claw.tfinal = 0.5 claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.outdir = outdir return claw
def setup(kernel_language='Fortran', solver_type='classic', use_petsc=False, outdir='./_output'): if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if kernel_language == 'Fortran': solver = pyclaw.ClawSolver1D(riemann.shallow_bathymetry_fwave_1D) elif kernel_language == 'Python': solver = pyclaw.ClawSolver1D(riemann.shallow_1D_py.shallow_fwave_1d) solver.kernel_language = 'Python' solver.limiters = pyclaw.limiters.tvd.vanleer solver.fwave = True solver.num_waves = 2 solver.num_eqn = 2 solver.bc_lower[0] = pyclaw.BC.extrap solver.bc_upper[0] = pyclaw.BC.extrap solver.aux_bc_lower[0] = pyclaw.BC.extrap solver.aux_bc_upper[0] = pyclaw.BC.extrap xlower = -1.0 xupper = 1.0 x = pyclaw.Dimension(xlower, xupper, 500, name='x') domain = pyclaw.Domain(x) state = pyclaw.State(domain, 2, 1) # Gravitational constant state.problem_data['grav'] = 9.8 state.problem_data['dry_tolerance'] = 1e-3 state.problem_data['sea_level'] = 0.0 xc = state.grid.x.centers state.aux[0, :] = 0.8 * numpy.exp(-xc**2 / 0.2**2) - 1.0 state.q[0, :] = 0.1 * numpy.exp(-(xc + 0.4)**2 / 0.2**2) - state.aux[0, :] state.q[1, :] = 0.0 claw = pyclaw.Controller() claw.keep_copy = True claw.tfinal = 1.0 claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.setplot = setplot claw.write_aux_init = True if outdir is not None: claw.outdir = outdir else: claw.output_format = None return claw
def wcblast(use_petsc=False, iplot=False, htmlplot=False, outdir='./_output', solver_type='classic'): """ Solve the Euler equations of compressible fluid dynamics. This example involves a pair of interacting shock waves. The conserved quantities are density, momentum density, and total energy density. """ if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type == 'sharpclaw': solver = pyclaw.SharpClawSolver1D() else: solver = pyclaw.ClawSolver1D() from clawpack import riemann solver.rp = riemann.rp1_euler_with_efix solver.num_waves = 3 solver.bc_lower[0] = pyclaw.BC.wall solver.bc_upper[0] = pyclaw.BC.wall # Initialize domain mx = 500 x = pyclaw.Dimension('x', 0.0, 1.0, mx) domain = pyclaw.Domain([x]) num_eqn = 3 state = pyclaw.State(domain, num_eqn) state.problem_data['gamma'] = gamma state.problem_data['gamma1'] = gamma1 state.q[0, :] = 1. state.q[1, :] = 0. x = state.grid.x.centers state.q[2, :] = ((x < 0.1) * 1.e3 + (0.1 <= x) * (x < 0.9) * 1.e-2 + (0.9 <= x) * 1.e2) / gamma1 solver.limiters = 4 claw = pyclaw.Controller() claw.tfinal = 0.038 claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.num_output_times = 10 claw.outdir = outdir # Solve status = claw.run() if htmlplot: pyclaw.plot.html_plot(outdir=outdir) if iplot: pyclaw.plot.interactive_plot(outdir=outdir) return claw.solution.q
def setup(use_petsc=False,solver_type='classic',kernel_language='Python',outdir='./_output'): from clawpack import riemann if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type=='classic': if kernel_language == 'Fortran': solver = pyclaw.ClawSolver1D(riemann.vc_advection_1D) elif kernel_language=='Python': solver = pyclaw.ClawSolver1D(riemann.vc_advection_1D_py.vc_advection_1D) elif solver_type=='sharpclaw': if kernel_language == 'Fortran': solver = pyclaw.SharpClawSolver1D(riemann.vc_advection_1D) elif kernel_language=='Python': solver = pyclaw.SharpClawSolver1D(riemann.vc_advection_1D_py.vc_advection_1D) solver.weno_order=weno_order else: raise Exception('Unrecognized value of solver_type.') solver.kernel_language = kernel_language solver.limiters = pyclaw.limiters.tvd.MC solver.bc_lower[0] = 2 solver.bc_upper[0] = 2 solver.aux_bc_lower[0] = 2 solver.aux_bc_upper[0] = 2 xlower=0.0; xupper=1.0; mx=100 x = pyclaw.Dimension('x',xlower,xupper,mx) domain = pyclaw.Domain(x) num_aux=1 num_eqn = 1 state = pyclaw.State(domain,num_eqn,num_aux) qinit(state) auxinit(state) claw = pyclaw.Controller() claw.outdir = outdir claw.solution = pyclaw.Solution(state,domain) claw.solver = solver claw.tfinal = 1.0 return claw
def setup(use_petsc=False, outdir='./_output', solver_type='classic', kernel_language='Python', disable_output=False): if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if kernel_language == 'Python': rs = riemann.euler_1D_py.euler_hllc_1D elif kernel_language == 'Fortran': rs = riemann.euler_hlle_1D if solver_type == 'sharpclaw': solver = pyclaw.SharpClawSolver1D(rs) elif solver_type == 'classic': solver = pyclaw.ClawSolver1D(rs) solver.kernel_language = kernel_language solver.bc_lower[0] = pyclaw.BC.extrap solver.bc_upper[0] = pyclaw.BC.extrap mx = 800 x = pyclaw.Dimension(-1.0, 1.0, mx, name='x') domain = pyclaw.Domain([x]) state = pyclaw.State(domain, num_eqn) state.problem_data['gamma'] = gamma state.problem_data['gamma1'] = gamma - 1. x = state.grid.x.centers rho_l = 1. rho_r = 1. / 8 p_l = 1. p_r = 0.1 state.q[density, :] = (x < 0.) * rho_l + (x >= 0.) * rho_r state.q[momentum, :] = 0. velocity = state.q[momentum, :] / state.q[density, :] pressure = (x < 0.) * p_l + (x >= 0.) * p_r state.q[energy, :] = pressure / ( gamma - 1.) + 0.5 * state.q[density, :] * velocity**2 claw = pyclaw.Controller() claw.tfinal = 0.4 claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.num_output_times = 10 claw.outdir = outdir claw.setplot = setplot claw.keep_copy = True if disable_output: claw.output_format = None return claw
def advection(kernel_language='Python',iplot=False,htmlplot=False, use_petsc=False,solver_type='classic', weno_order=5, outdir='./_output'): """ Example python script for solving the 1d advection equation. """ import numpy as np if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type=='sharpclaw': solver = pyclaw.SharpClawSolver1D() solver.weno_order=weno_order else: solver = pyclaw.ClawSolver1D() solver.kernel_language = kernel_language from clawpack.riemann import rp_advection solver.num_waves = rp_advection.num_waves if solver.kernel_language=='Python': solver.rp = rp_advection.rp_advection_1d else: from clawpack import riemann solver.rp = riemann.rp1_advection solver.bc_lower[0] = 2 solver.bc_upper[0] = 2 x = pyclaw.Dimension('x',0.0,1.0,100) domain = pyclaw.Domain(x) num_eqn = 1 state = pyclaw.State(domain,num_eqn) state.problem_data['u']=1. grid = state.grid xc=grid.x.centers beta=100; gamma=0; x0=0.75 state.q[0,:] = np.exp(-beta * (xc-x0)**2) * np.cos(gamma * (xc - x0)) claw = pyclaw.Controller() claw.keep_copy = True claw.solution = pyclaw.Solution(state,domain) claw.solver = solver if outdir is not None: claw.outdir = outdir else: claw.output_format = None claw.tfinal =1.0 status = claw.run() if htmlplot: pyclaw.plot.html_plot(outdir=outdir) if iplot: pyclaw.plot.interactive_plot(outdir=outdir) return claw
def setup(kernel_language='Python', use_petsc=False, outdir='./_output', solver_type='classic'): if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw solver = pyclaw.ClawSolver1D(riemann.shallow_1D_py.shallow_fwave_1d) solver.limiters = pyclaw.limiters.tvd.vanleer solver.kernel_language = "Python" solver.fwave = True solver.num_waves = 2 solver.num_eqn = 2 solver.bc_lower[0] = pyclaw.BC.wall solver.bc_upper[0] = pyclaw.BC.wall solver.aux_bc_lower[0] = pyclaw.BC.wall solver.aux_bc_upper[0] = pyclaw.BC.wall solver.step_source = stepSource # solver.dt = 0.00001 x_star = numpy.sqrt(80.0 / 1e-2) - 1.2 xlower = -x_star xupper = x_star x = pyclaw.Dimension(xlower, xupper, 500, name='x') domain = pyclaw.Domain(x) state = pyclaw.State(domain, 2, 1) # Gravitational constant state.problem_data['grav'] = 9.8 state.problem_data['sea_level'] = 0.0 xc = state.grid.x.centers # state.aux[0, :] = 0.8 * numpy.exp(-xc**2 / 0.2**2) - 1.0 state.aux[0, :] = 1.e-2 * (xc**2) - 80 ze = -((xc)**2) / 10 state.q[0, :] = numpy.where( ze > -10., 40.e0 * numpy.exp(ze) - state.aux[0, :], numpy.where(state.aux[0, :] <= 0, -state.aux[0, :], 0.)) state.q[1, :] = 0.0 claw = pyclaw.Controller() claw.keep_copy = True claw.tfinal = 8.0 claw.output_style = 1 claw.num_output_times = 25 claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.setplot = setplot claw.write_aux_init = True if outdir is not None: claw.outdir = outdir else: claw.output_format = None return claw
def setup(nx=100, kernel_language='Python', use_petsc=False, solver_type='classic', weno_order=5, time_integrator='SSP104', outdir='./_output'): if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if kernel_language == 'Fortran': riemann_solver = riemann.advection_1D elif kernel_language == 'Python': riemann_solver = riemann.advection_1D_py.advection_1D if solver_type == 'classic': solver = pyclaw.ClawSolver1D(riemann_solver) elif solver_type == 'sharpclaw': solver = pyclaw.SharpClawSolver1D(riemann_solver) solver.weno_order = weno_order solver.time_integrator = time_integrator else: raise Exception('Unrecognized value of solver_type.') solver.kernel_language = kernel_language solver.bc_lower[0] = pyclaw.BC.periodic solver.bc_upper[0] = pyclaw.BC.periodic x = pyclaw.Dimension('x', 0.0, 1.0, nx) domain = pyclaw.Domain(x) state = pyclaw.State(domain, solver.num_eqn) state.problem_data['u'] = 1. # Advection velocity # Initial data xc = state.grid.x.centers beta = 100 gamma = 0 x0 = 0.75 state.q[0, :] = np.exp(-beta * (xc - x0)**2) * np.cos(gamma * (xc - x0)) claw = pyclaw.Controller() claw.keep_copy = True claw.solution = pyclaw.Solution(state, domain) claw.solver = solver if outdir is not None: claw.outdir = outdir else: claw.output_format = None claw.tfinal = 1.0 claw.setplot = setplot return claw
def setup(use_petsc=False, iplot=False, htmlplot=False, outdir='./_output', solver_type='sharpclaw', kernel_language='Fortran'): """ Solve the Euler equations of compressible fluid dynamics. This example involves a shock wave impacting a sinusoidal density field. """ from clawpack import riemann if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type == 'sharpclaw': solver = pyclaw.SharpClawSolver1D(riemann.euler_with_efix_1D) solver.time_integrator = 'RK' solver.a, solver.b, solver.c = a, b, c solver.cfl_desired = 0.6 solver.cfl_max = 0.7 else: solver = pyclaw.ClawSolver1D(riemann.euler_with_efix_1D) solver.bc_lower[0] = pyclaw.BC.extrap solver.bc_upper[0] = pyclaw.BC.extrap # Initialize domain mx = 400 x = pyclaw.Dimension('x', -5.0, 5.0, mx) domain = pyclaw.Domain([x]) state = pyclaw.State(domain, solver.num_eqn) state.problem_data['gamma'] = gamma state.problem_data['gamma1'] = gamma1 xc = state.grid.x.centers epsilon = 0.2 state.q[0, :] = (xc < -4.) * 3.857143 + (xc >= -4.) * ( 1 + epsilon * np.sin(5 * xc)) velocity = (xc < -4.) * 2.629369 state.q[1, :] = velocity * state.q[0, :] pressure = (xc < -4.) * 10.33333 + (xc >= -4.) * 1. state.q[2, :] = pressure / gamma1 + 0.5 * state.q[0, :] * velocity**2 claw = pyclaw.Controller() claw.tfinal = 1.8 claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.num_output_times = 10 claw.outdir = outdir claw.setplot = setplot return claw
def setup(use_petsc=0, outdir='./_output', solver_type='classic'): """ Example python script for solving 1d traffic model: $$ q_t + umax( q(1-q) )_x = 0.$$ """ import numpy as np from clawpack import riemann if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw #=========================================================================== # Setup solver and solver parameters #=========================================================================== if solver_type == 'sharpclaw': solver = pyclaw.SharpClawSolver1D(riemann.traffic_1D) else: solver = pyclaw.ClawSolver1D(riemann.traffic_1D) solver.bc_lower[0] = pyclaw.BC.extrap solver.bc_upper[0] = pyclaw.BC.extrap #=========================================================================== # Initialize domain and then initialize the solution associated to the domain #=========================================================================== x = pyclaw.Dimension('x', -1.0, 1.0, 500) domain = pyclaw.Domain(x) num_eqn = 1 state = pyclaw.State(domain, num_eqn) grid = state.grid xc = grid.x.centers state.q[0, :] = 0.75 * (xc < 0) + 0.1 * (xc > 0.) state.problem_data['efix'] = True state.problem_data['umax'] = 1. #=========================================================================== # Setup controller and controller parameters. Then solve the problem #=========================================================================== claw = pyclaw.Controller() claw.tfinal = 2.0 claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.outdir = outdir claw.setplot = setplot claw.keep_copy = True return claw
def setup(use_petsc=0, kernel_language='Python', outdir='./_output', solver_type='classic'): if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if kernel_language == 'Python': riemann_solver = adsolver elif kernel_language == 'Fortran': riemann_solver = riemann.burgers_1D if solver_type == 'sharpclaw': solver = pyclaw.SharpClawSolver1D(riemann_solver) else: solver = pyclaw.ClawSolver1D(riemann_solver) solver.limiters = pyclaw.limiters.tvd.vanleer solver.kernel_language = kernel_language solver.bc_lower[0] = pyclaw.BC.periodic #solver.user_bc_lower=custom_bc_one solver.bc_upper[0] = pyclaw.BC.periodic #solver.user_bc_upper=custom_bc_two solver.num_waves = 1 solver.num_eqn = 1 x = pyclaw.Dimension(0.0, 1.0, 500, name='x') domain = pyclaw.Domain(x) num_eqn = 1 state = pyclaw.State(domain, num_eqn) xc = state.grid.x.centers state.q[0, :] = np.sin(np.pi * 2 * xc) + 0.50 state.problem_data['efix'] = True state.problem_data['a'] = 1.0 claw = pyclaw.Controller() claw.tfinal = 2.0 claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.outdir = outdir claw.setplot = setplot claw.keep_copy = True return claw
def vc_advection(use_petsc=False,solver_type='classic',kernel_language='Python',iplot=False,htmlplot=False,outdir='./_output'): if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type=='sharpclaw': solver = pyclaw.SharpClawSolver1D() else: solver = pyclaw.ClawSolver1D() from clawpack import riemann solver.num_waves = riemann.rp_vc_advection.num_waves solver.kernel_language = kernel_language if solver.kernel_language=='Python': solver.rp = riemann.rp_vc_advection.rp_vc_advection_1d elif solver.kernel_language=='Fortran': raise NotImplementedError('The 1D variable coefficient advection Riemann solver has not yet been ported.') solver.limiters = pyclaw.limiters.tvd.MC solver.bc_lower[0] = 2 solver.bc_upper[0] = 2 solver.aux_bc_lower[0] = 2 solver.aux_bc_upper[0] = 2 xlower=0.0; xupper=1.0; mx=100 x = pyclaw.Dimension('x',xlower,xupper,mx) domain = pyclaw.Domain(x) num_aux=1 num_eqn = 1 state = pyclaw.State(domain,num_eqn,num_aux) qinit(state) auxinit(state) claw = pyclaw.Controller() claw.outdir = outdir claw.solution = pyclaw.Solution(state,domain) claw.solver = solver claw.tfinal = 1.0 status = claw.run() if htmlplot: pyclaw.plot.html_plot(outdir=outdir) if iplot: pyclaw.plot.interactive_plot(outdir=outdir)
def setup(use_petsc=0, kernel_language='Fortran', outdir='./_output', solver_type='classic'): if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if kernel_language == 'Python': riemann_solver = riemann.burgers_1D_py.burgers_1D elif kernel_language == 'Fortran': riemann_solver = riemann.burgers_1D if solver_type == 'sharpclaw': solver = pyclaw.SharpClawSolver1D(riemann_solver) else: solver = pyclaw.ClawSolver1D(riemann_solver) solver.limiters = pyclaw.limiters.tvd.vanleer solver.kernel_language = kernel_language solver.bc_lower[0] = pyclaw.BC.custom solver.user_bc_lower = custom_bc solver.bc_upper[0] = pyclaw.BC.custom solver.user_bc_upper = custom_bc x = pyclaw.Dimension(-100.0, 100.0, steps, name='x') domain = pyclaw.Domain(x) num_eqn = 1 state = pyclaw.State(domain, num_eqn) xc = state.grid.x.centers state.q[0, :] = np.exp(-xc**2) state.problem_data['efix'] = True claw = pyclaw.Controller() claw.tfinal = 10.0 claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.outdir = outdir claw.setplot = setplot claw.keep_copy = True return claw
def setup(use_petsc=0, outdir='./_output', solver_type='classic', weno_order=5, N=1000): if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw riemann_solver = riemann.cubic_1D if solver_type=='sharpclaw': solver = pyclaw.SharpClawSolver1D(riemann_solver) solver.weno_order = weno_order else: solver = pyclaw.ClawSolver1D(riemann_solver) solver.limiters = pyclaw.limiters.tvd.vanleer solver.cfl_max = 1.0 solver.cfl_desired = 0.5 solver.kernel_language = 'Fortran' solver.bc_lower[0] = pyclaw.BC.extrap solver.bc_upper[0] = pyclaw.BC.extrap x = pyclaw.Dimension(-1.0, 3.0, N, name='x') domain = pyclaw.Domain(x) num_eqn = 1 state = pyclaw.State(domain, num_eqn) xc = state.grid.x.centers qL = 4.0 qR = -2.0 state.q[0,:] = (xc < -0.5) * qL + (xc >= -0.5) * qR claw = pyclaw.Controller() claw.tfinal = 0.2 claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.outdir = outdir claw.setplot = setplot claw.keep_copy = True return claw
def setup(use_petsc=0,outdir='./_output',solver_type='classic'): if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type=='sharpclaw': solver = pyclaw.SharpClawSolver1D(riemann.traffic_1D) else: solver = pyclaw.ClawSolver1D(riemann.traffic_1D) solver.bc_lower[0] = pyclaw.BC.extrap solver.bc_upper[0] = pyclaw.BC.extrap x = pyclaw.Dimension('x',-1.0,1.0,500) domain = pyclaw.Domain(x) num_eqn = 1 state = pyclaw.State(domain,num_eqn) grid = state.grid xc=grid.p_centers[0] state.q[0,:] = 0.75*(xc<0) + 0.1*(xc>0.) state.problem_data['efix']=True state.problem_data['umax']=1. claw = pyclaw.Controller() claw.tfinal =2.0 claw.solution = pyclaw.Solution(state,domain) claw.solver = solver claw.outdir = outdir claw.setplot = setplot claw.keep_copy = True return claw
def setup(use_petsc=False, kernel_language='Fortran', outdir='./_output', solver_type='sharpclaw', riemann_solver='roe', disable_output=False): if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if kernel_language == 'Python': if riemann_solver.lower() == 'roe': raise Exception('Python Roe solver not implemented.') elif riemann_solver.lower() == 'hlle': rs = riemann.shallow_1D_py.shallow_hll_1D elif kernel_language == 'Fortran': if riemann_solver.lower() == 'roe': rs = riemann.shallow_roe_with_efix_1D elif riemann_solver.lower() == 'hlle': rs = riemann.shallow_hlle_1D if solver_type == 'classic': solver = pyclaw.ClawSolver1D(rs) # solver.limiters = pyclaw.limiters.tvd.vanleer elif solver_type == 'sharpclaw': solver = pyclaw.SharpClawSolver1D(rs) if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type == 'sharpclaw': solver.dq_src = dq_swe # solver.dq_src = fortran_src_wrapper # use fortran subroutine # solver.call_before_step_each_stage = False # default is False solver.weno_order = 5 solver.lim_type = 2 # weno resonstruction solver.cfl_max = 0.21 solver.cfl_desired = 0.20 else: # solver = pyclaw.ClawSolver2D(riemann.euler_5wave_2D) solver.step_source = step_swe solver.source_split = 1 # Godunov splitting # solver.limiters = [11, 11] # 11 for A-R limiter solver.limiters = [4, 4] # 4 for MC limiter solver.cfl_max = 0.36 solver.cfl_desired = 0.35 # to remove maximum time step restriction using a sufficiently large number solver.max_steps = 1000000000 solver.kernel_language = kernel_language solver.user_bc_lower = incoming_sin solver.bc_lower[0] = pyclaw.BC.custom solver.bc_upper[0] = pyclaw.BC.extrap solver.before_step = b4step x = pyclaw.Dimension(xlower, xupper, mx, name='x') domain = pyclaw.Domain(x) # num_aux = 1 state = pyclaw.State(domain, num_eqn) # Auxiliary array solver.aux_bc_lower[0] = pyclaw.BC.periodic solver.aux_bc_upper[0] = pyclaw.BC.periodic # Gravitational constant state.problem_data['grav'] = 9.81 state.problem_data['dry_tolerance'] = 1e-5 state.problem_data['sea_level'] = 0.0 # xc = state.grid.x.centers # I.C.: normal flow state.q[depth, :] = normal_depth state.q[momentum, :] = normal_velocity * normal_depth # X = state.grid.x.centers # state.p_centers does not work, dont know why # state.aux[0,:] = channel_slope*(1.0 + dist_amp * np.sin(2.0 * np.pi * X/wave_length)) # state.aux[0,:] = bathymetry(X) claw = pyclaw.Controller() claw.keep_copy = True if disable_output: claw.output_format = None claw.output_style = 1 claw.tfinal = sim_time claw.num_output_times = int( sim_time / output_interval) # conversion between two output styles claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.outdir = outdir claw.setplot = setplot return claw
def internal_lapping(num_cells, eigen_method, **kargs): r"""docstring for oscillatory_wind""" # Construct output and plot directory paths prefix = 'ml_e%s_n%s' % (eigen_method, num_cells) name = 'lapping' outdir, plotdir, log_path = runclaw.create_output_paths( name, prefix, **kargs) # Redirect loggers # This is not working for all cases, see comments in runclaw.py for logger_name in ['io', 'solution', 'plot', 'evolve', 'f2py', 'data']: runclaw.replace_stream_handlers(logger_name, log_path, log_file_append=False) # Load in appropriate PyClaw version if kargs.get('use_petsc', False): import clawpack.petclaw as pyclaw else: import clawpack.pyclaw as pyclaw # ================= # = Create Solver = # ================= if kargs.get('solver_type', 'classic') == 'classic': solver = pyclaw.ClawSolver1D() else: raise NotImplementedError( 'Classic is currently the only supported solver.') # Solver method parameters solver.cfl_desired = 0.9 solver.cfl_max = 1.0 solver.max_steps = 5000 solver.fwave = True solver.kernel_language = 'Fortran' solver.num_waves = 4 solver.limiters = 3 solver.source_split = 1 # Boundary conditions solver.bc_lower[0] = 1 solver.bc_upper[0] = 1 solver.aux_bc_lower[0] = 1 solver.aux_bc_upper[0] = 1 # Set the Riemann solver solver.rp = riemann.rp1_layered_shallow_water # Set the before step functioning including the wind forcing solver.before_step = lambda solver, solution: ml.step.before_step( solver, solution) # Use simple friction source term solver.step_source = ml.step.friction_source # ============================ # = Create Initial Condition = # ============================ num_layers = 2 x = pyclaw.Dimension('x', 0.0, 1.0, num_cells) domain = pyclaw.Domain([x]) state = pyclaw.State(domain, 2 * num_layers, 3 + num_layers) state.aux[ml.aux.kappa_index, :] = 0.0 # Set physics data state.problem_data['g'] = 9.8 state.problem_data['manning'] = 0.022 state.problem_data['rho_air'] = 1.15e-3 state.problem_data['rho'] = [0.95, 1.0] state.problem_data[ 'r'] = state.problem_data['rho'][0] / state.problem_data['rho'][1] state.problem_data['one_minus_r'] = 1.0 - state.problem_data['r'] state.problem_data['num_layers'] = num_layers # Set method parameters, this ensures it gets to the Fortran routines state.problem_data['eigen_method'] = eigen_method state.problem_data['dry_tolerance'] = 1e-3 state.problem_data['inundation_method'] = 2 state.problem_data['entropy_fix'] = False solution = pyclaw.Solution(state, domain) solution.t = 0.0 # Set aux arrays including bathymetry, wind field and linearized depths ml.aux.set_sloped_shelf_bathymetry(solution.state, 0.4, 0.6, -1.0, -0.2) ml.aux.set_no_wind(solution.state) ml.aux.set_h_hat(solution.state, 0.5, [0.0, -0.6], [0.0, -0.6]) # Set initial condition ml.qinit.set_gaussian_init_condition(solution.state, 0.2, 0.2, 0.01, internal_layer=True) # ================================ # = Create simulation controller = # ================================ controller = pyclaw.Controller() controller.solution = solution controller.solver = solver # Output parameters controller.output_style = 1 controller.tfinal = 2.0 controller.num_output_times = 50 controller.write_aux_init = True controller.outdir = outdir controller.write_aux = True # ================== # = Run Simulation = # ================== state = controller.run() # ============ # = Plotting = # ============ plot_kargs = { 'rho': solution.state.problem_data['rho'], 'dry_tolerance': solution.state.problem_data['dry_tolerance'] } plot(setplot_path="./setplot_lapping.py", outdir=outdir, plotdir=plotdir, htmlplot=kargs.get('htmlplot', False), iplot=kargs.get('iplot', False), file_format=controller.output_format, **plot_kargs)
def dry_state(num_cells, eigen_method, entropy_fix, **kargs): r"""Run and plot a multi-layer dry state problem""" # Construct output and plot directory paths name = 'multilayer/dry_state' prefix = 'ml_e%s_m%s_fix' % (eigen_method, num_cells) if entropy_fix: prefix = "".join((prefix, "T")) else: prefix = "".join((prefix, "F")) outdir, plotdir, log_path = runclaw.create_output_paths( name, prefix, **kargs) # Redirect loggers # This is not working for all cases, see comments in runclaw.py for logger_name in [ 'pyclaw.io', 'pyclaw.solution', 'plot', 'pyclaw.solver', 'f2py', 'data' ]: runclaw.replace_stream_handlers(logger_name, log_path, log_file_append=False) # Load in appropriate PyClaw version if kargs.get('use_petsc', False): import clawpack.petclaw as pyclaw else: import clawpack.pyclaw as pyclaw # ================= # = Create Solver = # ================= if kargs.get('solver_type', 'classic') == 'classic': solver = pyclaw.ClawSolver1D(riemann_solver=layered_shallow_water_1D) else: raise NotImplementedError( 'Classic is currently the only supported solver.') # Solver method parameters solver.cfl_desired = 0.9 solver.cfl_max = 1.0 solver.max_steps = 5000 solver.fwave = True solver.kernel_language = 'Fortran' solver.limiters = 3 solver.source_split = 1 # Boundary conditions solver.bc_lower[0] = 1 solver.bc_upper[0] = 1 solver.aux_bc_lower[0] = 1 solver.aux_bc_upper[0] = 1 # Set the before step function solver.before_step = lambda solver, solution: ml.step.before_step( solver, solution) # Use simple friction source term solver.step_source = ml.step.friction_source # ============================ # = Create Initial Condition = # ============================ num_layers = 2 x = pyclaw.Dimension(0.0, 1.0, num_cells) domain = pyclaw.Domain([x]) state = pyclaw.State(domain, 2 * num_layers, 3 + num_layers) state.aux[ml.aux.kappa_index, :] = 0.0 # Set physics data state.problem_data['g'] = 9.8 state.problem_data['manning'] = 0.0 state.problem_data['rho_air'] = 1.15e-3 state.problem_data['rho'] = [0.95, 1.0] state.problem_data['r'] = \ state.problem_data['rho'][0] / state.problem_data['rho'][1] state.problem_data['one_minus_r'] = 1.0 - state.problem_data['r'] state.problem_data['num_layers'] = num_layers # Set method parameters, this ensures it gets to the Fortran routines state.problem_data['eigen_method'] = eigen_method state.problem_data['dry_tolerance'] = 1e-3 state.problem_data['inundation_method'] = 2 state.problem_data['entropy_fix'] = entropy_fix solution = pyclaw.Solution(state, domain) solution.t = 0.0 # Set aux arrays including bathymetry, wind field and linearized depths ml.aux.set_jump_bathymetry(solution.state, 0.5, [-1.0, -1.0]) ml.aux.set_no_wind(solution.state) ml.aux.set_h_hat(solution.state, 0.5, [0.0, -0.5], [0.0, -1.0]) # Set sea at rest initial condition q_left = [ 0.5 * state.problem_data['rho'][0], 0.0, 0.5 * state.problem_data['rho'][1], 0.0 ] q_right = [1.0 * state.problem_data['rho'][0], 0.0, 0.0, 0.0] ml.qinit.set_riemann_init_condition(solution.state, 0.5, q_left, q_right) # ================================ # = Create simulation controller = # ================================ controller = pyclaw.Controller() controller.solution = solution controller.solver = solver # Output parameters controller.output_style = 3 controller.nstepout = 1 controller.num_output_times = 100 controller.write_aux_init = True controller.outdir = outdir controller.write_aux = True # ================== # = Run Simulation = # ================== state = controller.run() # ============ # = Plotting = # ============ plot_kargs = { 'rho': solution.state.problem_data['rho'], 'dry_tolerance': solution.state.problem_data['dry_tolerance'] } plot.plot(setplot="./setplot_drystate.py", outdir=outdir, plotdir=plotdir, htmlplot=kargs.get('htmlplot', False), iplot=kargs.get('iplot', False), file_format=controller.output_format, **plot_kargs)
def oscillatory_wind(num_cells, eigen_method, **kargs): r"""docstring for oscillatory_wind""" # Construct output and plot directory paths prefix = 'ml_e%s_n%s' % (eigen_method, num_cells) name = 'multilayer/oscillatory_wind' outdir, plotdir, log_path = runclaw.create_output_paths( name, prefix, **kargs) # Redirect loggers # This is not working for all cases, see comments in runclaw.py for logger_name in [ 'pyclaw.io', 'pyclaw.solution', 'plot', 'pyclaw.solver', 'f2py', 'data' ]: runclaw.replace_stream_handlers(logger_name, log_path, log_file_append=False) # Load in appropriate PyClaw version if kargs.get('use_petsc', False): import clawpack.petclaw as pyclaw else: import clawpack.pyclaw as pyclaw # ================= # = Create Solver = # ================= if kargs.get('solver_type', 'classic') == 'classic': solver = pyclaw.ClawSolver1D(riemann_solver=layered_shallow_water_1D) else: raise NotImplementedError( 'Classic is currently the only supported solver.') # Solver method parameters solver.cfl_desired = 0.9 solver.cfl_max = 1.0 solver.max_steps = 5000 solver.fwave = True solver.kernel_language = 'Fortran' solver.limiters = 3 solver.source_split = 1 # Boundary conditions # Here we implement our own wall boundary conditions for the multi-layer # equations solver.bc_lower[0] = 0 solver.bc_upper[0] = 0 solver.user_bc_lower = ml.bc.wall_qbc_lower solver.user_bc_upper = ml.bc.wall_qbc_upper solver.aux_bc_lower[0] = 1 solver.aux_bc_upper[0] = 1 # Set the before step functioning including the wind forcing wind_func = lambda state: ml.aux.set_oscillatory_wind( state, A=5.0, N=2.0, omega=2.0, t_length=10.0) solver.before_step = lambda solver, solution: ml.step.before_step( solver, solution, wind_func=wind_func, raise_on_richardson=True) # Use simple friction source term solver.step_source = ml.step.friction_source # ============================ # = Create Initial Condition = # ============================ num_layers = 2 x = pyclaw.Dimension(0.0, 1.0, num_cells) domain = pyclaw.Domain([x]) state = pyclaw.State(domain, 2 * num_layers, 3 + num_layers) state.aux[ml.aux.kappa_index, :] = 0.0 # Set physics data state.problem_data['g'] = 9.8 state.problem_data['manning'] = 0.0 state.problem_data['rho_air'] = 1.15 state.problem_data['rho'] = [1025.0, 1045.0] state.problem_data['r'] = \ state.problem_data['rho'][0] / state.problem_data['rho'][1] state.problem_data['one_minus_r'] = 1.0 - state.problem_data['r'] state.problem_data['num_layers'] = num_layers # Set method parameters, this ensures it gets to the Fortran routines state.problem_data['eigen_method'] = eigen_method state.problem_data['dry_tolerance'] = 1e-3 state.problem_data['inundation_method'] = 2 state.problem_data['entropy_fix'] = False solution = pyclaw.Solution(state, domain) solution.t = 0.0 # Set aux arrays including bathymetry, wind field and linearized depths ml.aux.set_jump_bathymetry(solution.state, 0.5, [-1.0, -1.0]) wind_func(solution.state) ml.aux.set_h_hat(solution.state, 0.5, [0.0, -0.25], [0.0, -0.25]) # Set sea at rest initial condition ml.qinit.set_quiescent_init_condition(solution.state) # ================================ # = Create simulation controller = # ================================ controller = pyclaw.Controller() controller.solution = solution controller.solver = solver # Output parameters controller.output_style = 1 controller.tfinal = 10.0 controller.num_output_times = 160 controller.write_aux_init = True controller.outdir = outdir controller.keep_copy = True controller.write_aux_always = True # ================== # = Run Simulation = # ================== try: state = controller.run() except ml.step.RichardsonExceededError as e: print e # print "Writing out last solution available to frame %s." % str(len(controller.frames)) # e.solution.write(len(controller.frames),path=controller.outdir,write_aux=True) # ============ # = Plotting = # ============ plot_kargs = { 'xlower': solution.state.grid.x.lower, 'xupper': solution.state.grid.x.upper, 'rho': solution.state.problem_data['rho'], 'dry_tolerance': solution.state.problem_data['dry_tolerance'] } plot(setplot="./setplot_oscillatory.py", outdir=outdir, plotdir=plotdir, htmlplot=kargs.get('htmlplot', False), iplot=kargs.get('iplot', False), file_format=controller.output_format, **plot_kargs)
def smooth_test(eigen_method, dry=False, **kargs): r"""Smooth well-balanced test""" # Construct output and plot directory paths prefix = 'ml_e%s_d%s' % (eigen_method,dry) name = 'multilayer/well_balancing_smooth' outdir,plotdir,log_path = runclaw.create_output_paths(name,prefix,**kargs) # Redirect loggers # This is not working for all cases, see comments in runclaw.py for logger_name in ['pyclaw.io', 'pyclaw.solution', 'plot', 'pyclaw.solver', 'f2py','data']: runclaw.replace_stream_handlers(logger_name, log_path, log_file_append=False) # Load in appropriate PyClaw version if kargs.get('use_petsc',False): import clawpack.petclaw as pyclaw else: import clawpack.pyclaw as pyclaw # ================= # = Create Solver = # ================= if kargs.get('solver_type','classic') == 'classic': solver = pyclaw.ClawSolver1D(riemann_solver=layered_shallow_water_1D) else: raise NotImplementedError('Classic is currently the only supported solver.') # Solver method parameters solver.cfl_desired = 0.9 solver.cfl_max = 1.0 solver.max_steps = 5000 solver.fwave = True solver.kernel_language = 'Fortran' solver.limiters = 3 solver.source_split = 1 # Boundary conditions # Use wall boundary condition at beach solver.bc_lower[0] = 1 solver.bc_upper[0] = 1 solver.aux_bc_lower[0] = 1 solver.aux_bc_upper[0] = 1 # Set the before step function solver.before_step = lambda solver,solution:ml.step.before_step(solver, solution) # Use simple friction source term solver.step_source = ml.step.friction_source # ============================ # = Create Initial Condition = # ============================ num_layers = 2 x = pyclaw.Dimension(0.0, 10.0, 200) domain = pyclaw.Domain([x]) state = pyclaw.State(domain, 2 * num_layers, 3 + num_layers) state.aux[ml.aux.kappa_index,:] = 0.0 # Set physics data state.problem_data['g'] = 9.8 state.problem_data['manning'] = 0.0 state.problem_data['rho_air'] = 1.15 state.problem_data['rho'] = [0.98,1.0] state.problem_data['r'] = state.problem_data['rho'][0] / state.problem_data['rho'][1] state.problem_data['one_minus_r'] = 1.0 - state.problem_data['r'] state.problem_data['num_layers'] = num_layers # Set method parameters, this ensures it gets to the Fortran routines state.problem_data['eigen_method'] = eigen_method state.problem_data['dry_tolerance'] = 1e-3 state.problem_data['inundation_method'] = 2 state.problem_data['entropy_fix'] = False solution = pyclaw.Solution(state,domain) solution.t = 0.0 # Set aux arrays including bathymetry, wind field and linearized depths ml.aux.set_gaussian_bathymetry(solution.state, 10.0, 5, numpy.sqrt(5 / 2), 5.0) ml.aux.set_no_wind(solution.state) if dry: ml.aux.set_h_hat(solution.state, 0.5, [0.0, -6.0], [0.0, -6.0]) else: ml.aux.set_h_hat(solution.state, 0.5, [0.0, -4.0], [0.0, -4.0]) # Set perturbation to sea at rest ml.qinit.set_quiescent_init_condition(solution.state) # ================================ # = Create simulation controller = # ================================ controller = pyclaw.Controller() controller.solution = solution controller.solver = solver # Output parameters controller.output_style = 1 controller.tfinal = 10.0 controller.num_output_times = 1 controller.write_aux_init = True controller.outdir = outdir controller.write_aux = True # ================== # = Run Simulation = # ================== state = controller.run() # ============ # = Plotting = # ============ plot_kargs = {"rho":solution.state.problem_data['rho'], "dry_tolerance":solution.state.problem_data['dry_tolerance']} plot(setplot="./setplot_well_balanced.py",outdir=outdir, plotdir=plotdir, htmlplot=kargs.get('htmlplot',False), iplot=kargs.get('iplot',False), file_format=controller.output_format,**plot_kargs)
def setup(use_petsc=False, iplot=False, htmlplot=False, outdir='./_output', solver_type='sharpclaw', kernel_language='Fortran', use_char_decomp=False, tfluct_solver=True): if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if kernel_language == 'Python': rs = riemann.euler_1D_py.euler_roe_1D elif kernel_language == 'Fortran': rs = riemann.euler_with_efix_1D if solver_type == 'sharpclaw': solver = pyclaw.SharpClawSolver1D(rs) solver.time_integrator = 'RK' solver.a, solver.b, solver.c = a, b, c solver.cfl_desired = 0.6 solver.cfl_max = 0.7 if use_char_decomp: try: import sharpclaw1 # Import custom Fortran code solver.fmod = sharpclaw1 solver.tfluct_solver = tfluct_solver # Use total fluctuation solver for efficiency if solver.tfluct_solver: try: import euler_tfluct solver.tfluct = euler_tfluct except ImportError: import logging logger = logging.getLogger() logger.error( 'Unable to load tfluct solver, did you run make?') print 'Unable to load tfluct solver, did you run make?' raise except ImportError: import logging logger = logging.getLogger() logger.error( 'Unable to load sharpclaw1 solver, did you run make?') print 'Unable to load sharpclaw1 solver, did you run make?' pass solver.lim_type = 2 # WENO reconstruction solver.char_decomp = 2 # characteristic-wise reconstruction else: solver = pyclaw.ClawSolver1D(rs) solver.kernel_language = kernel_language solver.bc_lower[0] = pyclaw.BC.extrap solver.bc_upper[0] = pyclaw.BC.extrap mx = 400 x = pyclaw.Dimension(-5.0, 5.0, mx, name='x') domain = pyclaw.Domain([x]) state = pyclaw.State(domain, num_eqn) state.problem_data['gamma'] = gamma if kernel_language == 'Python': state.problem_data['efix'] = False xc = state.grid.p_centers[0] epsilon = 0.2 velocity = (xc < -4.) * 2.629369 pressure = (xc < -4.) * 10.33333 + (xc >= -4.) * 1. state.q[density, :] = (xc < -4.) * 3.857143 + (xc >= -4.) * ( 1 + epsilon * np.sin(5 * xc)) state.q[momentum, :] = velocity * state.q[density, :] state.q[energy, :] = pressure / ( gamma - 1.) + 0.5 * state.q[density, :] * velocity**2 claw = pyclaw.Controller() claw.tfinal = 1.8 claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.num_output_times = 10 claw.outdir = outdir claw.setplot = setplot claw.keep_copy = True return claw
def setup(use_petsc=False, kernel_language='Fortran', solver_type='classic', outdir='./_output', weno_order=5, disable_output=False): """ This example solves the 1-dimensional acoustics equations in a homogeneous medium. """ from numpy import sqrt, exp, cos from clawpack import riemann #================================================================= # Import the appropriate classes, depending on the options passed #================================================================= if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if solver_type == 'classic': if kernel_language == 'Fortran': solver = pyclaw.ClawSolver1D(riemann.acoustics_1D) elif kernel_language == 'Python': solver = pyclaw.ClawSolver1D(riemann.acoustics_1D_py.acoustics_1D) elif solver_type == 'sharpclaw': if kernel_language == 'Fortran': solver = pyclaw.SharpClawSolver1D(riemann.acoustics_1D) elif kernel_language == 'Python': solver = pyclaw.SharpClawSolver1D( riemann.acoustics_1D_py.acoustics_1D) solver.weno_order = weno_order else: raise Exception('Unrecognized value of solver_type.') #======================================================================== # Instantiate the solver and define the system of equations to be solved #======================================================================== solver.kernel_language = kernel_language solver.limiters = pyclaw.limiters.tvd.MC solver.bc_lower[0] = pyclaw.BC.periodic solver.bc_upper[0] = pyclaw.BC.periodic #======================================================================== # Instantiate the domain and set the boundary conditions #======================================================================== x = pyclaw.Dimension('x', 0.0, 1.0, 100) domain = pyclaw.Domain(x) num_eqn = 2 state = pyclaw.State(domain, num_eqn) #======================================================================== # Set problem-specific variables #======================================================================== rho = 1.0 bulk = 1.0 state.problem_data['rho'] = rho state.problem_data['bulk'] = bulk state.problem_data['zz'] = sqrt(rho * bulk) state.problem_data['cc'] = sqrt(bulk / rho) #======================================================================== # Set the initial condition #======================================================================== xc = domain.grid.x.centers beta = 100 gamma = 0 x0 = 0.75 state.q[0, :] = exp(-beta * (xc - x0)**2) * cos(gamma * (xc - x0)) state.q[1, :] = 0. solver.dt_initial = domain.grid.delta[0] / state.problem_data['cc'] * 0.1 #======================================================================== # Set up the controller object #======================================================================== claw = pyclaw.Controller() claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.outdir = outdir claw.keep_copy = True claw.num_output_times = 5 if disable_output: claw.output_format = None claw.tfinal = 1.0 return claw
def setup(use_petsc=False, kernel_language='Fortran', solver_type='classic', outdir='./_output', ptwise=False, weno_order=5, time_integrator='SSP104', disable_output=False, output_style=1): if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if kernel_language == 'Fortran': if ptwise: riemann_solver = riemann.acoustics_1D_ptwise else: riemann_solver = riemann.acoustics_1D elif kernel_language == 'Python': riemann_solver = riemann.acoustics_1D_py.acoustics_1D if solver_type == 'classic': solver = pyclaw.ClawSolver1D(riemann_solver) solver.limiters = pyclaw.limiters.tvd.MC elif solver_type == 'sharpclaw': solver = pyclaw.SharpClawSolver1D(riemann_solver) solver.weno_order = weno_order solver.time_integrator = time_integrator if time_integrator == 'SSPLMMk3': solver.lmm_steps = 4 else: raise Exception('Unrecognized value of solver_type.') solver.kernel_language = kernel_language x = pyclaw.Dimension(0.0, 1.0, 100, name='x') domain = pyclaw.Domain(x) num_eqn = 2 state = pyclaw.State(domain, num_eqn) solver.bc_lower[0] = pyclaw.BC.periodic solver.bc_upper[0] = pyclaw.BC.periodic rho = 1.0 # Material density bulk = 1.0 # Material bulk modulus state.problem_data['rho'] = rho state.problem_data['bulk'] = bulk state.problem_data['zz'] = sqrt(rho * bulk) # Impedance state.problem_data['cc'] = sqrt(bulk / rho) # Sound speed xc = domain.grid.x.centers beta = 100 gamma = 0 x0 = 0.75 state.q[0, :] = exp(-beta * (xc - x0)**2) * cos(gamma * (xc - x0)) state.q[1, :] = 0.0 solver.dt_initial = domain.grid.delta[0] / state.problem_data['cc'] * 0.1 claw = pyclaw.Controller() claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.outdir = outdir claw.output_style = output_style if output_style == 1: claw.tfinal = 1.0 claw.num_output_times = 10 elif output_style == 3: claw.nstep = 1 claw.num_output_times = 1 claw.keep_copy = True if disable_output: claw.output_format = None claw.setplot = setplot return claw
def setup(use_petsc=False, outdir='./_output', solver_type='sharpclaw', kernel_language='Fortran'): if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if kernel_language == 'Python': rs = riemann.euler_1D_py.euler_roe_1D elif kernel_language == 'Fortran': rs = riemann.euler_with_efix_1D if solver_type == 'sharpclaw': solver = pyclaw.SharpClawSolver1D(rs) solver.time_integrator = 'SSP33' solver.cfl_max = 0.65 solver.cfl_desired = 0.6 try: import sharpclaw1 solver.fmod = sharpclaw1 solver.tfluct_solver = True solver.lim_type = 1 # TVD reconstruction solver.char_decomp = 2 # characteristic-wise reconstructiong except ImportError: pass elif solver_type == 'classic': solver = pyclaw.ClawSolver1D(rs) solver.limiters = 4 solver.kernel_language = kernel_language solver.bc_lower[0] = pyclaw.BC.wall solver.bc_upper[0] = pyclaw.BC.wall mx = 800 x = pyclaw.Dimension('x', 0.0, 1.0, mx) domain = pyclaw.Domain([x]) state = pyclaw.State(domain, solver.num_eqn) state.problem_data['gamma'] = gamma state.problem_data['gamma1'] = gamma1 if kernel_language == 'Python': state.problem_data['efix'] = False state.q[0, :] = 1. state.q[1, :] = 0. x = state.grid.x.centers state.q[2, :] = ((x < 0.1) * 1.e3 + (0.1 <= x) * (x < 0.9) * 1.e-2 + (0.9 <= x) * 1.e2) / gamma1 claw = pyclaw.Controller() claw.tfinal = 0.038 claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.num_output_times = 10 claw.outdir = outdir claw.setplot = setplot claw.keep_copy = True return claw
def setup(use_petsc=0,kernel_language='Fortran',solver_type='classic',outdir='./_output'): """ Stegoton problem. Nonlinear elasticity in periodic medium. See LeVeque & Yong (2003). $$\\epsilon_t - u_x = 0$$ $$\\rho(x) u_t - \\sigma(\\epsilon,x)_x = 0$$ """ from clawpack import riemann if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if kernel_language=='Python': rs = riemann.nonlinear_elasticity_1D_py.nonlinear_elasticity_1D elif kernel_language=='Fortran': rs = riemann.nonlinear_elasticity_fwave_1D if solver_type=='sharpclaw': solver = pyclaw.SharpClawSolver1D(rs) solver.char_decomp=0 else: solver = pyclaw.ClawSolver1D(rs) solver.kernel_language = kernel_language solver.bc_lower[0] = pyclaw.BC.periodic solver.bc_upper[0] = pyclaw.BC.periodic #Use the same BCs for the aux array solver.aux_bc_lower = solver.bc_lower solver.aux_bc_upper = solver.bc_upper xlower=0.0; xupper=600.0 cellsperlayer=6; mx=int(round(xupper-xlower))*cellsperlayer x = pyclaw.Dimension('x',xlower,xupper,mx) domain = pyclaw.Domain(x) state = pyclaw.State(domain,solver.num_eqn) #Set global parameters alpha = 0.5 KA = 1.0 KB = 4.0 rhoA = 1.0 rhoB = 4.0 state.problem_data = {} state.problem_data['t1'] = 10.0 state.problem_data['tw1'] = 10.0 state.problem_data['a1'] = 0.0 state.problem_data['alpha'] = alpha state.problem_data['KA'] = KA state.problem_data['KB'] = KB state.problem_data['rhoA'] = rhoA state.problem_data['rhoB'] = rhoB state.problem_data['trtime'] = 250.0 state.problem_data['trdone'] = False #Initialize q and aux xc=state.grid.x.centers state.aux=setaux(xc,rhoB,KB,rhoA,KA,alpha,xlower=xlower,xupper=xupper) qinit(state,ic=2,a2=1.0,xupper=xupper) tfinal=500.; num_output_times = 10; solver.max_steps = 5000000 solver.fwave = True solver.before_step = b4step solver.user_bc_lower=moving_wall_bc solver.user_bc_upper=zero_bc claw = pyclaw.Controller() claw.keep_copy = False claw.output_style = 1 claw.num_output_times = num_output_times claw.tfinal = tfinal claw.solution = pyclaw.Solution(state,domain) claw.solver = solver return claw
def setup(use_petsc=0, kernel_language='Fortran', solver_type='classic', outdir='./_output'): from clawpack import riemann if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if kernel_language == 'Python': rs = riemann.nonlinear_elasticity_1D_py.nonlinear_elasticity_1D elif kernel_language == 'Fortran': rs = riemann.nonlinear_elasticity_fwave_1D if solver_type == 'sharpclaw': solver = pyclaw.SharpClawSolver1D(rs) solver.char_decomp = 0 else: solver = pyclaw.ClawSolver1D(rs) solver.kernel_language = kernel_language solver.bc_lower[0] = pyclaw.BC.custom solver.bc_upper[0] = pyclaw.BC.extrap #Use the same BCs for the aux array solver.aux_bc_lower[0] = pyclaw.BC.extrap solver.aux_bc_upper[0] = pyclaw.BC.extrap xlower = 0.0 xupper = 300.0 cells_per_layer = 12 mx = int(round(xupper - xlower)) * cells_per_layer x = pyclaw.Dimension(xlower, xupper, mx, name='x') domain = pyclaw.Domain(x) state = pyclaw.State(domain, solver.num_eqn) #Set global parameters alpha = 0.5 KA = 1.0 KB = 4.0 rhoA = 1.0 rhoB = 4.0 state.problem_data = {} state.problem_data['t1'] = 10.0 state.problem_data['tw1'] = 10.0 state.problem_data['a1'] = 0.1 state.problem_data['alpha'] = alpha state.problem_data['KA'] = KA state.problem_data['KB'] = KB state.problem_data['rhoA'] = rhoA state.problem_data['rhoB'] = rhoB state.problem_data['trtime'] = 999999999.0 state.problem_data['trdone'] = False #Initialize q and aux xc = state.grid.x.centers state.aux = setaux(xc, rhoB, KB, rhoA, KA, alpha, xlower=xlower, xupper=xupper) qinit(state, ic=1, a2=1.0, xupper=xupper) tfinal = 500. num_output_times = 20 solver.max_steps = 5000000 solver.fwave = True solver.before_step = b4step solver.user_bc_lower = moving_wall_bc solver.user_bc_upper = zero_bc claw = pyclaw.Controller() claw.output_style = 1 claw.num_output_times = num_output_times claw.tfinal = tfinal claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.setplot = setplot claw.keep_copy = True return claw
def setup(use_petsc=False, kernel_language='Fortran', outdir='./_output', solver_type='classic'): if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if kernel_language == 'Python': rs = riemann.shallow_1D_py.shallow_1D elif kernel_language == 'Fortran': rs = riemann.shallow_roe_with_efix_1D if solver_type == 'classic': solver = pyclaw.ClawSolver1D(rs) solver.limiters = pyclaw.limiters.tvd.vanleer elif solver_type == 'sharpclaw': solver = pyclaw.SharpClawSolver1D(rs) solver.kernel_language = kernel_language solver.bc_lower[0] = pyclaw.BC.extrap solver.bc_upper[0] = pyclaw.BC.extrap xlower = -5.0 xupper = 5.0 mx = 500 x = pyclaw.Dimension(xlower, xupper, mx, name='x') domain = pyclaw.Domain(x) state = pyclaw.State(domain, num_eqn) # Gravitational constant state.problem_data['grav'] = 1.0 xc = state.grid.x.centers IC = 'dam-break' x0 = 0. if IC == 'dam-break': hl = 3. ul = 0. hr = 1. ur = 0. state.q[depth, :] = hl * (xc <= x0) + hr * (xc > x0) state.q[momentum, :] = hl * ul * (xc <= x0) + hr * ur * (xc > x0) elif IC == '2-shock': hl = 1. ul = 1. hr = 1. ur = -1. state.q[depth, :] = hl * (xc <= x0) + hr * (xc > x0) state.q[momentum, :] = hl * ul * (xc <= x0) + hr * ur * (xc > x0) elif IC == 'perturbation': eps = 0.1 state.q[depth, :] = 1.0 + eps * np.exp(-(xc - x0)**2 / 0.5) state.q[momentum, :] = 0. claw = pyclaw.Controller() claw.keep_copy = True claw.tfinal = 2.0 claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.outdir = outdir claw.setplot = setplot return claw
def setup(use_petsc=False, kernel_language='Python', outdir='./_output', solver_type='classic'): if use_petsc: import clawpack.petclaw as pyclaw else: from clawpack import pyclaw if kernel_language == 'Python': rs = riemann.advection_nonlinear_1D_py.advection_nonlinear_1D elif kernel_language == 'Fortran': print('No fortran solver available for advection_nonlinear_1D') pass if solver_type == 'classic': solver = pyclaw.ClawSolver1D(rs) solver.limiters = pyclaw.limiters.tvd.vanleer elif solver_type == 'sharpclaw': solver = pyclaw.SharpClawSolver1D(rs) solver.kernel_language = kernel_language solver.bc_lower[0] = pyclaw.BC.custom solver.bc_upper[0] = pyclaw.BC.custom solver.user_bc_lower = lowerdirichlet solver.user_bc_upper = upperdirichlet xlower = 0.0 xupper = 1.0 mx = 51 x = pyclaw.Dimension(xlower, xupper, mx, name='x') domain = pyclaw.Domain(x) num_eqn = 2 state = pyclaw.State(domain, num_eqn) # Gravitational constant state.problem_data['u_rel'] = np.array([1., 1 / 30.]) state.problem_data['efix'] = False xc = state.grid.x.centers IC = 'dam-break' # IC = 'uniform-all' # IC = 'perturbation' x0 = xc[2] if IC == 'uniform-all': c0 = np.array([0.2, 0.0]) # state defaults to empty. Convert to ones and fill with c0 state.q = np.ones_like(state.q) * c0[:, np.newaxis] elif IC == 'dam-break': # I changed state.is_valid() to always return true for fortran contiguity cr0 = np.array([0.2, 0.0]) cl0 = np.array([0.0, 0.0]) state.q = np.ones_like(state.q) state.q = cl0[:,np.newaxis]*(xc <= x0)[np.newaxis,:] + \ cr0[:,np.newaxis]*(xc > x0)[np.newaxis,:] state.q[0, -1] = 1. # Change these later to reflect initial conditions # elif IC=='2-shock': # hl = 1. # ul = 1. # hr = 1. # ur = -1. # state.q[depth,:] = hl * (xc <= x0) + hr * (xc > x0) # state.q[momentum,:] = hl*ul * (xc <= x0) + hr*ur * (xc > x0) elif IC == 'perturbation': # x1 = x0 x1 = 0.3 x2 = 0.7 eps = 0.1 state.q[0, :] = eps * np.exp(-1 / eps * (xc - x1)**2) state.q[1, :] = eps * np.exp(-1 / eps * (xc - x1)**2) claw = pyclaw.Controller() claw.keep_copy = True claw.num_output_times = 50 claw.tfinal = 10 claw.solution = pyclaw.Solution(state, domain) claw.solver = solver claw.outdir = outdir claw.setplot = setplot return claw