def main(_): rng = random.PRNGKey(0) # Load MNIST dataset train_images, train_labels, test_images, test_labels = datasets.mnist() batch_size = 128 batch_shape = (-1, 28, 28, 1) num_train = train_images.shape[0] num_complete_batches, leftover = divmod(num_train, batch_size) num_batches = num_complete_batches + bool(leftover) train_images = np.reshape(train_images, batch_shape) test_images = np.reshape(test_images, batch_shape) def data_stream(): rng = npr.RandomState(0) while True: perm = rng.permutation(num_train) for i in range(num_batches): batch_idx = perm[i * batch_size:(i + 1) * batch_size] yield train_images[batch_idx], train_labels[batch_idx] batches = data_stream() # Model, loss, and accuracy functions init_random_params, predict = stax.serial( stax.Conv(32, (8, 8), strides=(2, 2), padding='SAME'), stax.Relu, stax.Conv(128, (6, 6), strides=(2, 2), padding='VALID'), stax.Relu, stax.Conv(128, (5, 5), strides=(1, 1), padding='VALID'), stax.Flatten, stax.Dense(128), stax.Relu, stax.Dense(10)) def loss(params, batch): inputs, targets = batch preds = predict(params, inputs) return -np.mean(logsoftmax(preds) * targets) def accuracy(params, batch): inputs, targets = batch target_class = np.argmax(targets, axis=1) predicted_class = np.argmax(predict(params, inputs), axis=1) return np.mean(predicted_class == target_class) # Instantiate an optimizer opt_init, opt_update, get_params = optimizers.adam(0.001) @jit def update(i, opt_state, batch): params = get_params(opt_state) return opt_update(i, grad(loss)(params, batch), opt_state) # Initialize model _, init_params = init_random_params(rng, batch_shape) opt_state = opt_init(init_params) itercount = itertools.count() # Training loop print("\nStarting training...") for epoch in range(FLAGS.nb_epochs): start_time = time.time() for _ in range(num_batches): opt_state = update(next(itercount), opt_state, next(batches)) epoch_time = time.time() - start_time # Evaluate model on clean data params = get_params(opt_state) train_acc = accuracy(params, (train_images, train_labels)) test_acc = accuracy(params, (test_images, test_labels)) # Evaluate model on adversarial data model_fn = lambda images: predict(params, images) test_images_fgm = fast_gradient_method(model_fn, test_images, FLAGS.eps, np.inf) test_images_pgd = projected_gradient_descent(model_fn, test_images, FLAGS.eps, 0.01, 40, np.inf) test_acc_fgm = accuracy(params, (test_images_fgm, test_labels)) test_acc_pgd = accuracy(params, (test_images_pgd, test_labels)) print("Epoch {} in {:0.2f} sec".format(epoch, epoch_time)) print("Training set accuracy: {}".format(train_acc)) print("Test set accuracy on clean examples: {}".format(test_acc)) print("Test set accuracy on FGM adversarial examples: {}".format( test_acc_fgm)) print("Test set accuracy on PGD adversarial examples: {}".format( test_acc_pgd))
def projected_gradient_descent( model_fn, x, eps, eps_iter, nb_iter, norm, clip_min=None, clip_max=None, y=None, targeted=False, rand_init=None, rand_minmax=0.3, ): """ This class implements either the Basic Iterative Method (Kurakin et al. 2016) when rand_init is set to 0. or the Madry et al. (2017) method when rand_minmax is larger than 0. Paper link (Kurakin et al. 2016): https://arxiv.org/pdf/1607.02533.pdf Paper link (Madry et al. 2017): https://arxiv.org/pdf/1706.06083.pdf :param model_fn: a callable that takes an input tensor and returns the model logits. :param x: input tensor. :param eps: epsilon (input variation parameter); see https://arxiv.org/abs/1412.6572. :param eps_iter: step size for each attack iteration :param nb_iter: Number of attack iterations. :param norm: Order of the norm (mimics NumPy). Possible values: np.inf or 2. :param clip_min: (optional) float. Minimum float value for adversarial example components. :param clip_max: (optional) float. Maximum float value for adversarial example components. :param y: (optional) Tensor with true labels. If targeted is true, then provide the target label. Otherwise, only provide this parameter if you'd like to use true labels when crafting adversarial samples. Otherwise, model predictions are used as labels to avoid the "label leaking" effect (explained in this paper: https://arxiv.org/abs/1611.01236). Default is None. :param targeted: (optional) bool. Is the attack targeted or untargeted? Untargeted, the default, will try to make the label incorrect. Targeted will instead try to move in the direction of being more like y. :return: a tensor for the adversarial example """ assert eps_iter <= eps, (eps_iter, eps) if norm == 1: raise NotImplementedError( "It's not clear that FGM is a good inner loop" " step for PGD when norm=1, because norm=1 FGM " " changes only one pixel at a time. We need " " to rigorously test a strong norm=1 PGD " "before enabling this feature.") if norm not in [np.inf, 2]: raise ValueError("Norm order must be either np.inf or 2.") # Initialize loop variables if rand_init: rand_minmax = eps eta = np.random.uniform(x.shape, -rand_minmax, rand_minmax) else: eta = np.zeros_like(x) # Clip eta eta = clip_eta(eta, norm, eps) adv_x = x + eta if clip_min is not None or clip_max is not None: adv_x = np.clip(adv_x, a_min=clip_min, a_max=clip_max) if y is None: # Using model predictions as ground truth to avoid label leaking x_labels = np.argmax(model_fn(x), 1) y = one_hot(x_labels, 10) for _ in range(nb_iter): adv_x = fast_gradient_method( model_fn, adv_x, eps_iter, norm, clip_min=clip_min, clip_max=clip_max, y=y, targeted=targeted, ) # Clipping perturbation eta to norm norm ball eta = adv_x - x eta = clip_eta(eta, norm, eps) adv_x = x + eta # Redo the clipping. # FGM already did it, but subtracting and re-adding eta can add some # small numerical error. if clip_min is not None or clip_max is not None: adv_x = np.clip(adv_x, a_min=clip_min, a_max=clip_max) return adv_x
def projected_gradient_descent( model_fn, x, eps, eps_iter, nb_iter, norm, clip_min=None, clip_max=None, y=None, targeted=False, rand_init=None, rand_minmax=0.3, ): """ This class implements either the Basic Iterative Method (Kurakin et al. 2016) when rand_init is set to 0. or the Madry et al. (2017) method when rand_minmax is larger than 0. Paper link (Kurakin et al. 2016): https://arxiv.org/pdf/1607.02533.pdf Paper link (Madry et al. 2017): https://arxiv.org/pdf/1706.06083.pdf :param model_fn: a callable that takes an input tensor and returns the model logits. :param x: input tensor. :param eps: epsilon (input variation parameter); see https://arxiv.org/abs/1412.6572. :param eps_iter: step size for each attack iteration :param nb_iter: Number of attack iterations. :param norm: Order of the norm (mimics NumPy). Possible values: np.inf or 2. :param clip_min: (optional) float. Minimum float value for adversarial example components. :param clip_max: (optional) float. Maximum float value for adversarial example components. :param y: (optional) Tensor with true labels. If targeted is true, then provide the target label. Otherwise, only provide this parameter if you'd like to use true labels when crafting adversarial samples. Otherwise, model predictions are used as labels to avoid the "label leaking" effect (explained in this paper: https://arxiv.org/abs/1611.01236). Default is None. :param targeted: (optional) bool. Is the attack targeted or untargeted? Untargeted, the default, will try to make the label incorrect. Targeted will instead try to move in the direction of being more like y. :return: a tensor for the adversarial example """ BALL = isinstance(eps, float) assert (BALL or eps.shape == x.shape), "Eps must define an epsilon ball or an ellipsoid" assert (not BALL) or np.array(eps_iter <= eps).all(), (eps_iter, eps) if norm == 1: raise NotImplementedError( "It's not clear that FGM is a good inner loop" " step for PGD when norm=1, because norm=1 FGM " " changes only one pixel at a time. We need " " to rigorously test a strong norm=1 PGD " "before enabling this feature.") if norm not in [np.inf, 2]: raise ValueError("Norm order must be either np.inf or 2.") # Initialize loop variables if rand_init: rand_minmax = eps eta = np.random.uniform(x.shape, -rand_minmax, rand_minmax) eta = clip_eta(eta, norm, eps) else: eta = np.zeros_like(x) adv_x = x + eta if clip_min is not None or clip_max is not None: adv_x = np.clip(adv_x, a_min=clip_min, a_max=clip_max) if y is None: # Using model predictions as ground truth to avoid label leaking x_labels = np.argmax(model_fn(x), 1) y = one_hot(x_labels, 10) for _ in range(nb_iter): adv_x = fast_gradient_method( model_fn, adv_x, eps_iter, norm, clip_min=clip_min, clip_max=clip_max, y=y, targeted=targeted, ) if not isinstance(eps, float) and (norm == 2): raise NotImplementedError # Projection onto the ellipsoid in l2 """ perturbation = Proj(x + grads) - x Optimization problem: x_{proj}* = arg min_{x_proj} .5 * ||x_{proj}-y||_2^2 s.t. (x_{proj}-c)' W (x_{proj}-c) <= 1 """ adv_x *= eps_iter x_ = x.ravel() y_ = adv_x.ravel( ) # We want to project y back on the ellipsoid defined by eps w_ = 1 / ( eps.ravel()**2 + 1e-12 ) # Squared inverse of the diagonal matrix W that transforms the ball into an axis-aligned ellipsoid def f_and_g(x_p): g_ = x_p - y_ f_ = .5 * np.linalg.norm(g_, ord=2)**2 return f_, g_ def functionValIneq(x_p): t0 = x_p - x_ return np.dot(t0, w_ * t0) def gradientIneq(x_p): t0 = x_p - x_ return 2 * (w_ * t0) x0 = onp.random.randn(x_.shape[0]) bnds = [(-np.inf, np.inf)] * x_.shape[0] constraints = ({ 'type': 'ineq', 'fun': lambda x: -functionValIneq(x), 'jac': lambda x: -gradientIneq(x) }) result = minimize(f_and_g, x0, jac=True, method='SLSQP', bounds=bnds, constraints=constraints) x_p = result.x print("\nFunction value ineq.:", functionValIneq(x_p)) adv_x = np.reshape(x_p, x.shape) # Clipping perturbation eta to norm norm ball eta = adv_x - x eta = clip_eta(eta, norm, eps) adv_x = x + eta # Redo the clipping. # FGM already did it, but subtracting and re-adding eta can add some # small numerical error. if clip_min is not None or clip_max is not None: adv_x = np.clip(adv_x, a_min=clip_min, a_max=clip_max) return adv_x
def main(_): rng = random.PRNGKey(0) # Load MNIST dataset train_images, train_labels, test_images, test_labels = datasets.mnist() batch_size = 128 batch_shape = (-1, 28, 28, 1) num_train = train_images.shape[0] num_complete_batches, leftover = divmod(num_train, batch_size) num_batches = num_complete_batches + bool(leftover) train_images = np.reshape(train_images, batch_shape) test_images = np.reshape(test_images, batch_shape) def data_stream(): rng = npr.RandomState(0) while True: perm = rng.permutation(num_train) for i in range(num_batches): batch_idx = perm[i * batch_size:(i + 1) * batch_size] yield train_images[batch_idx], train_labels[batch_idx] def save(fn, opt_state): params = deepcopy(get_params(opt_state)) save_dict = {} for idx, p in enumerate(params): if (p != ()): pp = (p[0].tolist(), p[1].tolist()) params[idx] = pp save_dict["params"] = params with open(fn, "w") as f: json.dump(save_dict, f) def load(fn): with open(fn, "r") as f: params = json.load(f) params = params["params"] for idx, p in enumerate(params): if (p != []): pp = (np.array(p[0]), np.array(p[1])) params[idx] = pp else: params[idx] = () return opt_init(params) batches = data_stream() # Model, loss, and accuracy functions init_random_params, predict = stax.serial( stax.Conv(32, (8, 8), strides=(2, 2), padding="SAME"), stax.Relu, stax.Conv(128, (6, 6), strides=(2, 2), padding="VALID"), stax.Relu, stax.Conv(128, (5, 5), strides=(1, 1), padding="VALID"), stax.Flatten, stax.Dense(128), stax.Relu, stax.Dense(10), ) def loss(params, batch): inputs, targets = batch preds = predict(params, inputs) return -np.mean(logsoftmax(preds) * targets) def accuracy(params, batch): inputs, targets = batch target_class = np.argmax(targets, axis=1) predicted_class = np.argmax(predict(params, inputs), axis=1) return np.mean(predicted_class == target_class) def gen_ellipsoid(X, zeta_rel, zeta_const, alpha, N_steps): zeta = (np.abs(X).T * zeta_rel).T + zeta_const if (alpha is None): alpha = 1 / N_steps * zeta else: assert isinstance(alpha, float), "Alpha must be float" alpha = alpha * np.ones_like(X) return zeta, alpha def gen_ellipsoid_match_volume(X, zeta_const, eps, alpha, N_steps): x_norms = np.linalg.norm(np.reshape(X, (X.shape[0], -1)), ord=1, axis=1) N = np.prod(X.shape[1:]) zeta_rel = N * (eps - zeta_const) / x_norms assert (zeta_rel <= 1.0).all( ), "Zeta rel cannot be larger than 1. Please increase zeta const or reduce eps" zeta_rel = np.clip(0.0, zeta_rel, 1.0) return gen_ellipsoid(X, zeta_rel, zeta_const, alpha, N_steps) # Instantiate an optimizer opt_init, opt_update, get_params = optimizers.adam(0.001) @jit def update(i, opt_state, batch): params = get_params(opt_state) return opt_update(i, grad(loss)(params, batch), opt_state) # Initialize model _, init_params = init_random_params(rng, batch_shape) opt_state = opt_init(init_params) itercount = itertools.count() try: opt_state = load("tutorials/jax/test_model.json") except: # Training loop print("\nStarting training...") for _ in range(num_batches): opt_state = update(next(itercount), opt_state, next(batches)) epoch_time = time.time() - start_time save("tutorials/jax/test_model.json", opt_state) # Evaluate model on clean data params = get_params(opt_state) # Evaluate model on adversarial data model_fn = lambda images: predict(params, images) # Generate single attacking test image idx = 0 plt.figure(figsize=(15, 6), constrained_layout=True) zeta, alpha = gen_ellipsoid(X=test_images[idx].reshape((1, 28, 28, 1)), zeta_rel=FLAGS.zeta_rel, zeta_const=FLAGS.zeta_const, alpha=None, N_steps=40) # zeta, alpha = gen_ellipsoid_match_volume(X=test_images[idx].reshape((1,28,28,1)), zeta_const=FLAGS.zeta_const, eps=FLAGS.eps, alpha=None, N_steps=40) test_images_pgd_ellipsoid = projected_gradient_descent( model_fn, test_images[idx].reshape((1, 28, 28, 1)), zeta, alpha, 40, np.inf) predict_pgd_ellipsoid = np.argmax(predict(params, test_images_pgd_ellipsoid), axis=1) test_images_fgm = fast_gradient_method( model_fn, test_images[idx].reshape((1, 28, 28, 1)), 0.075, np.inf) predict_fgm = np.argmax(predict(params, test_images_fgm), axis=1) test_images_pgd = projected_gradient_descent( model_fn, test_images[idx].reshape((1, 28, 28, 1)), FLAGS.eps, 0.01, 40, 2) predict_pgd = np.argmax(predict(params, test_images_pgd), axis=1) base = 100 f_ = lambda x: np.log(x) / np.log(base) a = base - 1 transform = 1 + a * test_images[idx].reshape((1, 28, 28, 1)) # [1,base] # test_images_pgd_transform = projected_gradient_descent(model_fn, f_(np.where(transform > base,base,transform)), FLAGS.zeta_rel, 0.01, 40, np.inf) test_images_pgd_transform = projected_gradient_descent( model_fn, f_(np.where(transform > base, base, transform)), 1.8, 0.01, 40, 2) test_images_pgd_transform = np.clip(test_images_pgd_transform, 0.0, 1.0) test_images_pgd_transform = (base**test_images_pgd_transform - 1) / a predict_transform = np.argmax(predict(params, test_images_pgd_transform), axis=1) plt.subplot(151) plt.imshow(np.squeeze(test_images[idx]), cmap='gray') plt.title("Original") plt.subplot(152) plt.imshow(np.squeeze(test_images_fgm), cmap='gray') plt.title(f"FGM L-Inf Pred: {predict_fgm}") plt.subplot(153) plt.imshow(np.squeeze(test_images_pgd), cmap='gray') plt.title(f"PGD L2 {predict_pgd}") plt.subplot(154) plt.imshow(np.squeeze(test_images_pgd_ellipsoid), cmap='gray') plt.title(f"PGD Ellipsoid L-Inf Pred: {predict_pgd_ellipsoid}") plt.subplot(155) plt.imshow(np.squeeze(test_images_pgd_transform), cmap='gray') plt.title(f"PGD log{base} L2 Pred: {predict_transform}") plt.show() transform = 1 + a * test_images test_images_pgd_transform = projected_gradient_descent( model_fn, f_(np.where(transform > base, base, transform)), FLAGS.zeta_rel, 0.01, 40, np.inf) test_images_pgd_transform = np.clip(test_images_pgd_transform, 0.0, 1.0) test_images_pgd_transform = (base**test_images_pgd_transform - 1) / a test_acc_pgd_transform = accuracy(params, (test_images_pgd_transform, test_labels)) # Generate whole attacking test images # zeta, alpha = gen_ellipsoid(X=test_images, zeta_rel=FLAGS.zeta_rel, zeta_const=FLAGS.zeta_const, alpha=None, N_steps=40) zeta, alpha = gen_ellipsoid_match_volume(X=test_images, zeta_const=FLAGS.zeta_const, eps=FLAGS.eps, alpha=None, N_steps=40) test_images_pgd_ellipsoid = projected_gradient_descent( model_fn, test_images, zeta, alpha, 40, np.inf) test_acc_pgd_ellipsoid = accuracy(params, (test_images_pgd_ellipsoid, test_labels)) test_images_fgm = fast_gradient_method(model_fn, test_images, FLAGS.eps, np.inf) test_images_pgd = projected_gradient_descent(model_fn, test_images, FLAGS.eps, 0.01, 40, np.inf) test_acc_fgm = accuracy(params, (test_images_fgm, test_labels)) test_acc_pgd = accuracy(params, (test_images_pgd, test_labels)) train_acc = accuracy(params, (train_images, train_labels)) test_acc = accuracy(params, (test_images, test_labels)) print("Training set accuracy: {}".format(train_acc)) print("Test set accuracy on clean examples: {}".format(test_acc)) print("Test set accuracy on FGM adversarial examples: {}".format( test_acc_fgm)) print("Test set accuracy on PGD adversarial examples: {}".format( test_acc_pgd)) print("Test set accuracy on PGD Ellipsoid adversarial examples: {}".format( test_acc_pgd_ellipsoid)) print( "Test set accuracy on PGD Ellipsoid via transform adversarial examples: {}" .format(test_acc_pgd_transform))
x_train_n, y_train_n, x_test_n, y_test_n = datasets.get_dataset( "fashion_mnist", n_train, n_test, noise=True) # Constructing Kernels print("=> Computing NTK for train and test") with print_time(): model = kernel_fit(x_train, y_train) # Evaluating on test set print(accuracy(model(x_test), y_test, topk=(1, 5))) print("=> Running high frequency FGM attack against resulting NTK") with print_time(): x_test_hf_fgm = fast_gradient_method( model_highfreq_transformed(model), do_highfreq_transform(x_test), 0.3, np.inf, ) print(accuracy(model(x_test_hf_fgm), y_test, topk=(1, 5))) print("=> Running low frequency FGM attack against resulting NTK") with print_time(): x_test_lf_fgm = fast_gradient_method( model_lowfreq_transformed(model), do_lowfreq_transform(x_test), 0.3, np.inf, ) print(accuracy(model(x_test_lf_fgm), y_test, topk=(1, 5))) print("=> Running FGM attack against resulting NTK")
print("="*80) x_train, y_train, x_test, y_test = datasets.get_dataset("fashion_mnist", 1024, 128, perturb=True) validate( val_loader=datasets.minibatch( x_test, y_test, batch_size=128, train_epochs=1, key=None ), model=apply_fn, params=params, criterion=criterion, epoch=20, batch_size=128, num_images=len(x_test), ) x_train, y_train, x_test, y_test = datasets.get_dataset("fashion_mnist", 1024, 128) print("=> Running FGM attack against resulting NTK") now = time.time() x_test_fgm = fast_gradient_method(model, x_test, 0.3, np.inf) y_test_fgm = model(x_test_fgm) print(f"Took {time.time() - now:0.2f}s") print(accuracy(y_test_fgm, y_test, topk=(1, 5))) print("=> Running PGD attack against resulting NTK") now = time.time() x_test_pgd = projected_gradient_descent(model, x_test, 0.3, 0.01, 40, np.inf) y_test_pgd = model(x_test_pgd) print(f"Took {time.time() - now:0.2f}s") print(accuracy(y_test_pgd, y_test, topk=(1, 5)))