コード例 #1
0
def prep_bbox(sess,
              logits_scalar,
              x,
              y,
              X_train,
              Y_train,
              X_test,
              Y_test,
              img_rows,
              img_cols,
              channels,
              nb_epochs,
              batch_size,
              learning_rate,
              rng,
              phase=None,
              binary=False,
              scale=False,
              nb_filters=64,
              model_path=None,
              adv=0,
              delay=0,
              eps=0.3):
    """
    Define and train a model that simulates the "remote"
    black-box oracle described in the original paper.
    :param sess: the TF session
    :param x: the input placeholder for MNIST
    :param y: the ouput placeholder for MNIST
    :param X_train: the training data for the oracle
    :param Y_train: the training labels for the oracle
    :param X_test: the testing data for the oracle
    :param Y_test: the testing labels for the oracle
    :param nb_epochs: number of epochs to train model
    :param batch_size: size of training batches
    :param learning_rate: learning rate for training
    :param rng: numpy.random.RandomState
    :return:
    """

    # Define TF model graph (for the black-box model)
    save = False
    train_from_scratch = False

    if model_path is not None:
        if os.path.exists(model_path):
            # check for existing model in immediate subfolder
            if any(f.endswith('.meta') for f in os.listdir(model_path)):
                binary, scale, nb_filters, batch_size, learning_rate, nb_epochs, adv = parse_model_settings(
                    model_path)
                train_from_scratch = False
            else:
                model_path = build_model_save_path(model_path, binary,
                                                   batch_size, nb_filters,
                                                   learning_rate, nb_epochs,
                                                   adv, delay, scale)
                print(model_path)
                save = True
                train_from_scratch = True
    else:
        train_from_scratch = True  # train from scratch, but don't save since no path given

    if binary:
        if scale:
            #from cleverhans_tutorials.tutorial_models import make_scaled_binary_cnn
            # model = make_scaled_binary_cnn(phase, 'bb_binsc_', input_shape=(
            from cleverhans_tutorials.tutorial_models import make_scaled_binary_rand_cnn
            model = make_scaled_binary_rand_cnn(phase,
                                                logits_scalar,
                                                'bb_binsc_',
                                                input_shape=(None, img_rows,
                                                             img_cols,
                                                             channels),
                                                nb_filters=nb_filters)
        else:
            from cleverhans_tutorials.tutorial_models import make_basic_binary_cnn
            model = make_basic_binary_cnn(phase,
                                          logits_scalar,
                                          'bb_bin_',
                                          input_shape=(None, img_rows,
                                                       img_cols, channels),
                                          nb_filters=nb_filters)
    else:
        from cleverhans_tutorials.tutorial_models import make_basic_cnn
        model = make_basic_cnn(phase,
                               logits_scalar,
                               'bb_fp_',
                               input_shape=(None, img_rows, img_cols,
                                            channels),
                               nb_filters=nb_filters)

    preds = model(x, reuse=False)
    print("Defined TensorFlow model graph.")

    def evaluate():
        # Print out the accuracy on legitimate data
        eval_params = {'batch_size': batch_size}
        acc = model_eval(sess,
                         x,
                         y,
                         preds,
                         X_test,
                         Y_test,
                         phase=phase,
                         args=eval_params)
        print('Test accuracy of black-box on legitimate test '
              'examples: %.4f' % acc)

    # Train an MNIST model
    train_params = {
        'binary': binary,
        'nb_epochs': nb_epochs,
        'batch_size': batch_size,
        'learning_rate': learning_rate,
        'loss_name': 'bb train loss',
        'filename': 'bb_model',
        'train_scope': 'bb_model',
        'reuse_global_step': False,
        'is_training': True
    }

    if adv != 0:
        if adv == ADVERSARIAL_TRAINING_MADRYETAL:
            from cleverhans.attacks import MadryEtAl
            nb_iter = 20
            train_attack_params = {
                'eps': MAX_EPS,
                'eps_iter': 0.01,
                'nb_iter': nb_iter
            }
            train_attacker = MadryEtAl(model, sess=sess)

        if adv == ADVERSARIAL_TRAINING_FGSM:
            from cleverhans.attacks import FastGradientMethod
            train_attacker = FastGradientMethod(model, back='tf', sess=sess)

        # create the adversarial trainer
        train_attack_params.update({'clip_min': 0., 'clip_max': 1.})
        adv_x_train = train_attacker.generate(x, phase, **train_attack_params)
        preds_adv = model.get_probs(adv_x_train)

    if train_from_scratch:
        if save:
            train_params.update({'log_dir': model_path})
            if adv and delay > 0:
                train_params.update({'nb_epochs': delay})

        # do clean training for 'nb_epochs' or 'delay' epochs
        model_train(sess,
                    x,
                    y,
                    preds,
                    X_train,
                    Y_train,
                    phase=phase,
                    evaluate=evaluate,
                    args=train_params,
                    save=save,
                    rng=rng)

        # optionally do additional adversarial training
        if adv:
            print("Adversarial training for %d epochs" % (nb_epochs - delay))
            train_params.update({'nb_epochs': nb_epochs - delay})
            train_params.update({'reuse_global_step': True})
            model_train(sess,
                        x,
                        y,
                        preds,
                        X_train,
                        Y_train,
                        phase=phase,
                        predictions_adv=preds_adv,
                        evaluate=evaluate,
                        args=train_params,
                        save=save,
                        rng=rng)
    else:
        tf_model_load(sess, model_path)
        print('Restored model from %s' % model_path)

    accuracy = evaluate()

    return model, preds, accuracy, model_path
コード例 #2
0
ファイル: alexnet_attack.py プロジェクト: ce13b046/EMPIR
def main(argv=None):
    model_path = FLAGS.model_path
    targeted = True if FLAGS.targeted else False
    scale = True if FLAGS.scale else False
    learning_rate = FLAGS.learning_rate
    nb_filters = FLAGS.nb_filters
    batch_size = FLAGS.batch_size
    nb_epochs = FLAGS.nb_epochs
    delay = FLAGS.delay
    eps = FLAGS.eps
    adv = FLAGS.adv

    attack = FLAGS.attack
    attack_iterations = FLAGS.attack_iterations
    nb_iter = FLAGS.nb_iter
    
    #### EMPIR extra flags
    lowprecision=FLAGS.lowprecision
    abits=FLAGS.abits
    wbits=FLAGS.wbits
    abitsList=FLAGS.abitsList
    wbitsList=FLAGS.wbitsList
    stocRound=True if FLAGS.stocRound else False
    rand=FLAGS.rand 
    model_path2 = FLAGS.model_path2
    model_path1 = FLAGS.model_path1
    model_path3 = FLAGS.model_path3
    ensembleThree=True if FLAGS.ensembleThree else False
    abits2=FLAGS.abits2
    wbits2=FLAGS.wbits2
    abits2List=FLAGS.abits2List
    wbits2List=FLAGS.wbits2List
    ####
   
    save = False
    train_from_scratch = False

    #### Imagenet flags
    imagenet_path = FLAGS.imagenet_path
    if imagenet_path is None:
        print("Error: Imagenet data path not specified")
        sys.exit(1)

    # Imagenet specific dimensions
    img_rows = _DEFAULT_IMAGE_SIZE
    img_cols = _DEFAULT_IMAGE_SIZE
    channels = _NUM_CHANNELS
    nb_classes = _NUM_CLASSES

    # Set TF random seed to improve reproducibility
    tf.set_random_seed(1234)

    if not hasattr(backend, "tf"):
        raise RuntimeError("This tutorial requires keras to be configured"
                           " to use the TensorFlow backend.")

    # Image dimensions ordering should follow the Theano convention
    if keras.backend.image_dim_ordering() != 'tf':
        keras.backend.set_image_dim_ordering('tf')
        print("INFO: '~/.keras/keras.json' sets 'image_dim_ordering' to "
              "'th', temporarily setting to 'tf'")

    # Create TF session and set as Keras backend session
    sess = tf.Session()
    keras.backend.set_session(sess)

    set_log_level(logging.WARNING)
    
    # Get imagenet datasets
    train_dataset, test_dataset = data_imagenet(nb_epochs, batch_size, imagenet_path)

    # Creating a initializable iterators
    train_iterator = train_dataset.make_initializable_iterator()
    test_iterator = test_dataset.make_initializable_iterator()

    # Getting next elements from the iterators
    next_test_element = test_iterator.get_next()
    next_train_element = train_iterator.get_next()
    
    train_x, train_y = train_iterator.get_next()
    test_x, test_y = test_iterator.get_next()

    # Define input TF placeholder
    x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols, channels))
    y = tf.placeholder(tf.float32, shape=(None, nb_classes))
    phase = tf.placeholder(tf.bool, name="phase")

    logits_scalar = tf.placeholder_with_default(
        INIT_T, shape=(), name="logits_temperature")
   
    if ensembleThree: 
        if (model_path1 is None or model_path2 is None or model_path3 is None):
            train_from_scratch = True
        else:
            train_from_scratch = False
    elif model_path is not None:
        if os.path.exists(model_path):
            # check for existing model in immediate subfolder
            if any(f.endswith('.meta') for f in os.listdir(model_path)):
                train_from_scratch = False
            else:
                model_path = build_model_save_path(
                    model_path, batch_size, nb_filters, learning_rate, nb_epochs, adv, delay)
                print(model_path)
                save = True
                train_from_scratch = True
    else:
        train_from_scratch = True  # train from scratch, but don't save since no path given
    
    if ensembleThree: 
       if (wbitsList is None) or (abitsList is None): # Layer wise separate quantization not specified for first model
           if (wbits==0) or (abits==0):
               print("Error: the number of bits for constant precision weights and activations across layers for the first model have to specified using wbits1 and abits1 flags")
               sys.exit(1)
           else:
               fixedPrec1 = 1
       elif (len(wbitsList) != 6) or (len(abitsList) != 6):
           print("Error: Need to specify the precisions for activations and weights for the atleast the four convolutional layers of alexnet excluding the first layer and 2 fully connected layers excluding the last layer of the first model")  
           sys.exit(1)
       else: 
           fixedPrec1 = 0
       
       if (wbits2List is None) or (abits2List is None): # Layer wise separate quantization not specified for second model
           if (wbits2==0) or (abits2==0):
               print("Error: the number of bits for constant precision weights and activations across layers for the second model have to specified using wbits1 and abits1 flags")
               sys.exit(1)
           else:
               fixedPrec2 = 1
       elif (len(wbits2List) != 6) or (len(abits2List) != 6):
           print("Error: Need to specify the precisions for activations and weights for the atleast the four convolutional layers of alexnet excluding the first layer and 2 fully connected layers excluding the last layer of the second model")  
           sys.exit(1)
       else: 
           fixedPrec2 = 0

       if (fixedPrec2 != 1) or (fixedPrec1 != 1): # Atleast one of the models have separate precisions per layer
           fixedPrec=0
           print("Within atleast one model has separate precisions")
           if (fixedPrec1 == 1): # first layer has fixed precision
               abitsList = (abits, abits, abits, abits, abits, abits)
               wbitsList = (wbits, wbits, wbits, wbits, wbits, wbits)
           if (fixedPrec2 == 1): # second layer has fixed precision
               abits2List = (abits2, abits2, abits2, abits2, abits2, abits2)
               wbits2List = (wbits2, wbits2, wbits2, wbits2, wbits2, wbits2)
       else:
           fixedPrec=1
       
       if (train_from_scratch):
           print ("The ensemble model cannot be trained from scratch")
           sys.exit(1)
       if fixedPrec == 1:
           from cleverhans_tutorials.tutorial_models import make_ensemble_three_alexnet
           model = make_ensemble_three_alexnet(
               phase, logits_scalar, 'lp1_', 'lp2_', 'fp_', wbits, abits, wbits2, abits2, input_shape=(None, img_rows, img_cols, channels), nb_filters=nb_filters, nb_classes=nb_classes) 
       else:
           from cleverhans_tutorials.tutorial_models import make_layerwise_three_combined_alexnet
           model = make_layerwise_three_combined_alexnet(
               phase, logits_scalar, 'lp1_', 'lp2_', 'fp_', wbitsList, abitsList, wbits2List, abits2List, input_shape=(None, img_rows, img_cols, channels), nb_filters=nb_filters, nb_classes=nb_classes) 
    elif lowprecision:
       if (wbitsList is None) or (abitsList is None): # Layer wise separate quantization not specified
           if (wbits==0) or (abits==0):
               print("Error: the number of bits for constant precision weights and activations across layers have to specified using wbits and abits flags")
               sys.exit(1)
           else:
               fixedPrec = 1
       elif (len(wbitsList) != 6) or (len(abitsList) != 6):
           print("Error: Need to specify the precisions for activations and weights for the atleast the four convolutional layers of alexnet excluding the first layer and 2 fully connected layers excluding the last layer")  
           sys.exit(1)
       else: 
           fixedPrec = 0
       
       if fixedPrec:
           
           ### For training from scratch
           from cleverhans_tutorials.tutorial_models import make_basic_lowprecision_alexnet
           model = make_basic_lowprecision_alexnet(phase, logits_scalar, 'lp_', wbits, abits, input_shape=(
            None, img_rows, img_cols, channels), nb_filters=nb_filters, nb_classes=nb_classes)  
       else:
           from cleverhans_tutorials.tutorial_models import make_layerwise_lowprecision_alexnet
           model = make_layerwise_lowprecision_alexnet(phase, logits_scalar, 'lp_', wbitsList, abitsList, 
            input_shape=(None, img_rows, img_cols, channels), nb_filters=nb_filters, nb_classes=nb_classes) 
    else:
        ### For training from scratch
        from cleverhans_tutorials.tutorial_models import make_basic_alexnet_from_scratch
        model = make_basic_alexnet_from_scratch(phase, logits_scalar, 'fp_', input_shape=(
        None, img_rows, img_cols, channels), nb_filters=nb_filters, nb_classes=nb_classes) 

    # separate calling function for ensemble models
    if ensembleThree:
        preds = model.ensemble_call(x, reuse=False)
    else:
    ##default
        preds = model(x, reuse=False)
    print("Defined TensorFlow model graph.")

    rng = np.random.RandomState([2017, 8, 30])

    def evaluate():
        # Evaluate the accuracy of the CIFAR10 model on legitimate test
        # examples
        eval_params = {'batch_size': batch_size}
        if ensembleThree:
            acc = model_eval_ensemble_imagenet(
                sess, x, y, preds, test_iterator, test_x, test_y, phase=phase, args=eval_params)
        else: #default below
            acc = model_eval_imagenet(
                sess, x, y, preds, test_iterator, test_x, test_y, phase=phase, args=eval_params)
        print('Test accuracy on legitimate examples: %0.4f' % acc)

    # Train an Imagenet model
    train_params = {
        'lowprecision': lowprecision,
        'nb_epochs': nb_epochs,
        'batch_size': batch_size,
        'learning_rate': learning_rate,
        'loss_name': 'train loss',
        'filename': 'model',
        'reuse_global_step': False,
        'train_scope': 'train',
        'is_training': True
    }

    if adv != 0:
        if adv == ADVERSARIAL_TRAINING_MADRYETAL:
            from cleverhans.attacks import MadryEtAl
            train_attack_params = {'eps': MAX_EPS, 'eps_iter': 0.01,
                                   'nb_iter': nb_iter}
            train_attacker = MadryEtAl(model, sess=sess)

        elif adv == ADVERSARIAL_TRAINING_FGSM:
            from cleverhans.attacks import FastGradientMethod
            stddev = int(np.ceil((MAX_EPS * 255) // 2))
            train_attack_params = {'eps': tf.abs(tf.truncated_normal(
                shape=(batch_size, 1, 1, 1), mean=0, stddev=stddev))}
            train_attacker = FastGradientMethod(model, back='tf', sess=sess)
        # create the adversarial trainer
        train_attack_params.update({'clip_min': 0., 'clip_max': 1.})
        adv_x_train = train_attacker.generate(x, phase, **train_attack_params)
        preds_adv_train = model.get_probs(adv_x_train)

        eval_attack_params = {'eps': MAX_EPS, 'clip_min': 0., 'clip_max': 1.}
        adv_x_eval = train_attacker.generate(x, phase, **eval_attack_params)
        preds_adv_eval = model.get_probs(adv_x_eval)  # * logits_scalar
   #  if adv:
   #      from cleverhans.attacks import FastGradientMethod
   #      fgsm = FastGradientMethod(model, back='tf', sess=sess)
   #      fgsm_params = {'eps': eps, 'clip_min': 0., 'clip_max': 1.}
   #      adv_x_train = fgsm.generate(x, phase, **fgsm_params)
   #      preds_adv = model.get_probs(adv_x_train)

    if train_from_scratch:
        if save:
            train_params.update({'log_dir': model_path})
            if adv and delay > 0:
                train_params.update({'nb_epochs': delay})
        
        # do clean training for 'nb_epochs' or 'delay' epochs with learning rate reducing with time
        model_train_imagenet2(sess, x, y, preds, train_iterator, train_x, train_y, phase=phase,
                evaluate=evaluate, args=train_params, save=save, rng=rng)

        # optionally do additional adversarial training
        if adv:
            print("Adversarial training for %d epochs" % (nb_epochs - delay))
            train_params.update({'nb_epochs': nb_epochs - delay})
            train_params.update({'reuse_global_step': True})
            model_train_imagenet(sess, x, y, preds, train_iterator, train_x, train_y, phase=phase,
                    predictions_adv=preds_adv_train, evaluate=evaluate, args=train_params, save=save, rng=rng)
    else:
        if ensembleThree: ## ensembleThree models have to loaded from different paths
            variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
            # First 11 variables from path1
            stored_variables = ['lp_conv1_init/k', 'lp_conv1_init/b', 'lp_conv2_init/k', 'lp_conv3_init/k', 'lp_conv4_init/k', 'lp_conv5_init/k', 'lp_ip1init/W', 'lp_ip1init/b', 'lp_ip2init/W', 'lp_logits_init/W', 'lp_logits_init/b']
            variable_dict = dict(OrderedDict(zip(stored_variables, variables[:11]))) # only dict was messing with the order
            # Restore the first set of variables from model_path1
            saver = tf.train.Saver(variable_dict)
            saver.restore(sess, tf.train.latest_checkpoint(model_path1))
            # Restore the second set of variables from model_path2
            # Second 11 variables from path2
            variable_dict = dict(OrderedDict(zip(stored_variables, variables[11:22])))
            saver2 = tf.train.Saver(variable_dict)
            saver2.restore(sess, tf.train.latest_checkpoint(model_path2))
            # Third 11 variables from path3
            stored_variables = ['fp_conv1_init/k', 'fp_conv1_init/b', 'fp_conv2_init/k', 'fp_conv3_init/k', 'fp_conv4_init/k', 'fp_conv5_init/k', 'fp_ip1init/W', 'fp_ip1init/b', 'fp_ip2init/W', 'fp_logits_init/W', 'fp_logits_init/b']
            variable_dict = dict(OrderedDict(zip(stored_variables, variables[22:33])))
            saver3 = tf.train.Saver(variable_dict)
            saver3.restore(sess, tf.train.latest_checkpoint(model_path3))
            # Next 24 batch norm variables from path1
            stored_variables = ['lp__batchNorm1/batch_normalization/gamma', 'lp__batchNorm1/batch_normalization/beta', 'lp__batchNorm1/batch_normalization/moving_mean', 'lp__batchNorm1/batch_normalization/moving_variance', 'lp__batchNorm2/batch_normalization/gamma', 'lp__batchNorm2/batch_normalization/beta', 'lp__batchNorm2/batch_normalization/moving_mean', 'lp__batchNorm2/batch_normalization/moving_variance', 'lp__batchNorm3/batch_normalization/gamma', 'lp__batchNorm3/batch_normalization/beta', 'lp__batchNorm3/batch_normalization/moving_mean', 'lp__batchNorm3/batch_normalization/moving_variance', 'lp__batchNorm4/batch_normalization/gamma', 'lp__batchNorm4/batch_normalization/beta', 'lp__batchNorm4/batch_normalization/moving_mean', 'lp__batchNorm4/batch_normalization/moving_variance', 'lp__batchNorm5/batch_normalization/gamma', 'lp__batchNorm5/batch_normalization/beta', 'lp__batchNorm5/batch_normalization/moving_mean', 'lp__batchNorm5/batch_normalization/moving_variance', 'lp__batchNorm6/batch_normalization/gamma', 'lp__batchNorm6/batch_normalization/beta', 'lp__batchNorm6/batch_normalization/moving_mean', 'lp__batchNorm6/batch_normalization/moving_variance']

            variable_dict = dict(OrderedDict(zip(stored_variables, variables[33:57])))
            saver = tf.train.Saver(variable_dict)
            saver.restore(sess, tf.train.latest_checkpoint(model_path1))
            # Next 24 batch norm variables from path2
            variable_dict = dict(OrderedDict(zip(stored_variables, variables[57:81])))
            saver = tf.train.Saver(variable_dict)
            saver.restore(sess, tf.train.latest_checkpoint(model_path2))
            # Final 24 batch norm variables from path1
            stored_variables = ['fp__batchNorm1/batch_normalization/gamma', 'fp__batchNorm1/batch_normalization/beta', 'fp__batchNorm1/batch_normalization/moving_mean', 'fp__batchNorm1/batch_normalization/moving_variance', 'fp__batchNorm2/batch_normalization/gamma', 'fp__batchNorm2/batch_normalization/beta', 'fp__batchNorm2/batch_normalization/moving_mean', 'fp__batchNorm2/batch_normalization/moving_variance', 'fp__batchNorm3/batch_normalization/gamma', 'fp__batchNorm3/batch_normalization/beta', 'fp__batchNorm3/batch_normalization/moving_mean', 'fp__batchNorm3/batch_normalization/moving_variance', 'fp__batchNorm4/batch_normalization/gamma', 'fp__batchNorm4/batch_normalization/beta', 'fp__batchNorm4/batch_normalization/moving_mean', 'fp__batchNorm4/batch_normalization/moving_variance', 'fp__batchNorm5/batch_normalization/gamma', 'fp__batchNorm5/batch_normalization/beta', 'fp__batchNorm5/batch_normalization/moving_mean', 'fp__batchNorm5/batch_normalization/moving_variance', 'fp__batchNorm6/batch_normalization/gamma', 'fp__batchNorm6/batch_normalization/beta', 'fp__batchNorm6/batch_normalization/moving_mean', 'fp__batchNorm6/batch_normalization/moving_variance']
            variable_dict = dict(OrderedDict(zip(stored_variables, variables[81:105])))
            saver = tf.train.Saver(variable_dict)
            saver.restore(sess, tf.train.latest_checkpoint(model_path3))
        else: # restoring the model trained using this setup, not a downloaded one
            tf_model_load(sess, model_path)
            print('Restored model from %s' % model_path)
            # evaluate()


    # Evaluate the accuracy of the model on legitimate test examples
    eval_params = {'batch_size': batch_size}
    if ensembleThree:
        accuracy = model_eval_ensemble_imagenet(sess, x, y, preds, test_iterator, test_x, test_y, phase=phase, feed={phase: False}, args=eval_params)
    else: #default below
        accuracy = model_eval_imagenet(sess, x, y, preds, test_iterator, test_x, test_y, phase=phase, feed={phase: False}, args=eval_params)
    print('Test accuracy on legitimate test examples: {0}'.format(accuracy))

    ###########################################################################
    # Build dataset
    ###########################################################################

    adv_inputs = test_x #adversarial inputs can be generated from any of the test examples 

    ###########################################################################
    # Craft adversarial examples using generic approach
    ###########################################################################
    nb_adv_per_sample = 1
    adv_ys = None
    yname = "y"

    print('Crafting adversarial examples')
    print("This could take some time ...")

    if ensembleThree:
        model_type = 'ensembleThree'
    else:
        model_type = 'default'

    if attack == ATTACK_CARLINI_WAGNER_L2:
        from cleverhans.attacks import CarliniWagnerL2
        attacker = CarliniWagnerL2(model, back='tf', sess=sess, model_type=model_type, num_classes=nb_classes)
        attack_params = {'binary_search_steps': 1,
                         'max_iterations': attack_iterations,
                         'learning_rate': 0.1,
                         'batch_size': batch_size,
                         'initial_const': 10,
                         }
    elif attack == ATTACK_JSMA:
        from cleverhans.attacks import SaliencyMapMethod
        attacker = SaliencyMapMethod(model, back='tf', sess=sess, model_type=model_type, num_classes=nb_classes)
        attack_params = {'theta': 1., 'gamma': 0.1}
    elif attack == ATTACK_FGSM:
        from cleverhans.attacks import FastGradientMethod
        attacker = FastGradientMethod(model, back='tf', sess=sess, model_type=model_type, num_classes=nb_classes)
        attack_params = {'eps': eps}
    elif attack == ATTACK_MADRYETAL:
        from cleverhans.attacks import MadryEtAl
        attacker = MadryEtAl(model, back='tf', sess=sess, model_type=model_type, num_classes=nb_classes)
        attack_params = {'eps': eps, 'eps_iter': 0.01, 'nb_iter': nb_iter}
    elif attack == ATTACK_BASICITER:
        print('Attack: BasicIterativeMethod')
        from cleverhans.attacks import BasicIterativeMethod
        attacker = BasicIterativeMethod(model, back='tf', sess=sess, model_type=model_type, num_classes=nb_classes)
        attack_params = {'eps': eps, 'eps_iter': 0.01, 'nb_iter': nb_iter}
    else:
        print("Attack undefined")
        sys.exit(1)

    attack_params.update({'clip_min': -2.2, 'clip_max': 2.7}) # Since max and min for imagenet turns out to be around -2.11 and 2.12
    eval_params = {'batch_size': batch_size}
    '''
    adv_x = attacker.generate(x, phase, **attack_params)
    # Craft adversarial examples using Fast Gradient Sign Method (FGSM)
    eval_params = {'batch_size': batch_size}
    X_test_adv, = batch_eval(sess, [x], [adv_x], [adv_inputs], feed={
                             phase: False}, args=eval_params)
    '''

    print("Evaluating un-targeted results")
    if ensembleThree:
        adv_accuracy = model_eval_ensemble_adv_imagenet(sess, x, y, preds, test_iterator, 
                        test_x, test_y, phase=phase, args=eval_params, attacker=attacker, attack_params=attack_params)
    else:
        adv_accuracy = model_eval_adv_imagenet(sess, x, y, preds, test_iterator, 
                        test_x, test_y, phase=phase, args=eval_params, attacker=attacker, attack_params=attack_params)
    
    # Compute the number of adversarial examples that were successfully found
    print('Test accuracy on adversarial examples {0:.4f}'.format(adv_accuracy))


    # Close TF session
    sess.close()
コード例 #3
0
def mnist_attack(train_start=0,
                 train_end=60000,
                 test_start=0,
                 test_end=10000,
                 viz_enabled=True,
                 nb_epochs=6,
                 batch_size=128,
                 nb_filters=64,
                 nb_samples=10,
                 learning_rate=0.001,
                 eps=0.3,
                 attack=0,
                 attack_iterations=100,
                 model_path=None,
                 targeted=False,
                 binary=False,
                 scale=False,
                 rand=False,
                 debug=None,
                 test=False,
                 data_dir=None,
                 delay=0,
                 adv=0,
                 nb_iter=40):
    """
    MNIST tutorial for generic attack
    :param train_start: index of first training set example
    :param train_end: index of last training set example
    :param test_start: index of first test set example
    :param test_end: index of last test set example
    :param viz_enabled: (boolean) activate plots of adversarial examples
    :param nb_epochs: number of epochs to train model
    :param batch_size: size of training batches
    :param nb_classes: number of output classes
    :param nb_samples: number of test inputs to attack
    :param learning_rate: learning rate for training
    :param model_path: path to the model file
    :param targeted: should we run a targeted attack? or untargeted?
    :return: an AccuracyReport object
    """
    # Object used to keep track of (and return) key accuracies
    report = AccuracyReport()

    # MNIST-specific dimensions
    img_rows = 28
    img_cols = 28
    channels = 1
    nb_classes = 10

    # Set TF random seed to improve reproducibility
    tf.set_random_seed(1237)

    # Create TF session
    sess = tf.Session()
    print("Created TensorFlow session.")

    if debug:
        set_log_level(logging.DEBUG)
    else:
        set_log_level(logging.WARNING)  # for running on sharcnet

    # Get MNIST test data
    X_train, Y_train, X_test, Y_test = data_mnist(datadir=data_dir,
                                                  train_start=train_start,
                                                  train_end=train_end,
                                                  test_start=test_start,
                                                  test_end=test_end)

    # Define input TF placeholder
    x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols, channels))
    y = tf.placeholder(tf.float32, shape=(None, nb_classes))
    phase = tf.placeholder(tf.bool, name='phase')

    # for attempting to break unscaled network.
    logits_scalar = tf.placeholder_with_default(INIT_T,
                                                shape=(),
                                                name="logits_temperature")

    save = False
    train_from_scratch = False
    if model_path is not None:
        if os.path.exists(model_path):
            # check for existing model in immediate subfolder
            if any(f.endswith('.meta') for f in os.listdir(model_path)):
                binary, scale, nb_filters, batch_size, learning_rate, nb_epochs, adv = parse_model_settings(
                    model_path)
                train_from_scratch = False
            else:
                model_path = build_model_save_path(model_path, binary,
                                                   batch_size, nb_filters,
                                                   learning_rate, nb_epochs,
                                                   adv, delay, scale)
                print(model_path)
                save = True
                train_from_scratch = True
    else:
        train_from_scratch = True  # train from scratch, but don't save since no path given

    # Define TF model graph
    if binary:
        print('binary=True')
        if scale:
            print('scale=True')
            if rand:
                print('rand=True')
                from cleverhans_tutorials.tutorial_models import make_scaled_binary_rand_cnn
                model = make_scaled_binary_rand_cnn(
                    phase,
                    logits_scalar,
                    'binsc_',
                    input_shape=(None, img_rows, img_cols, channels),
                    nb_filters=nb_filters)
            else:
                from cleverhans_tutorials.tutorial_models import make_scaled_binary_cnn
                model = make_scaled_binary_cnn(phase,
                                               logits_scalar,
                                               'binsc_',
                                               input_shape=(None, img_rows,
                                                            img_cols,
                                                            channels),
                                               nb_filters=nb_filters)
        else:
            from cleverhans_tutorials.tutorial_models import make_basic_binary_cnn
            model = make_basic_binary_cnn(phase,
                                          logits_scalar,
                                          'bin_',
                                          nb_filters=nb_filters)
    else:
        if rand:
            print('rand=True')
            from cleverhans_tutorials.tutorial_models import make_scaled_rand_cnn
            model = make_scaled_rand_cnn(phase,
                                         logits_scalar,
                                         'fp_rand',
                                         nb_filters=nb_filters)
        else:
            from cleverhans_tutorials.tutorial_models import make_basic_cnn
            model = make_basic_cnn(phase,
                                   logits_scalar,
                                   'fp_',
                                   nb_filters=nb_filters)

    preds = model(x, reuse=False)  # * logits_scalar
    print("Defined TensorFlow model graph.")

    ###########################################################################
    # Training the model using TensorFlow
    ###########################################################################
    rng = np.random.RandomState([2017, 8, 30])

    # Train an MNIST model
    train_params = {
        'binary': binary,
        'nb_epochs': nb_epochs,
        'batch_size': batch_size,
        'learning_rate': learning_rate,
        'loss_name': 'train loss',
        'filename': 'model',
        'reuse_global_step': False,
        'train_scope': 'train',
        'is_training': True
    }

    if adv != 0:
        if adv == ADVERSARIAL_TRAINING_MADRYETAL:
            from cleverhans.attacks import MadryEtAl
            train_attack_params = {
                'eps': MAX_EPS,
                'eps_iter': 0.01,
                'nb_iter': nb_iter
            }
            train_attacker = MadryEtAl(model, sess=sess)

        elif adv == ADVERSARIAL_TRAINING_FGSM:
            from cleverhans.attacks import FastGradientMethod
            stddev = int(np.ceil((MAX_EPS * 255) // 2))
            train_attack_params = {
                'eps':
                tf.abs(
                    tf.truncated_normal(shape=(batch_size, 1, 1, 1),
                                        mean=0,
                                        stddev=stddev))
            }
            train_attacker = FastGradientMethod(model, back='tf', sess=sess)
        # create the adversarial trainer
        train_attack_params.update({'clip_min': 0., 'clip_max': 1.})
        adv_x_train = train_attacker.generate(x, phase, **train_attack_params)
        preds_adv_train = model.get_probs(adv_x_train)

        eval_attack_params = {'eps': MAX_EPS, 'clip_min': 0., 'clip_max': 1.}
        adv_x_eval = train_attacker.generate(x, phase, **eval_attack_params)
        preds_adv_eval = model.get_probs(adv_x_eval)  # * logits_scalar

    def evaluate():
        # Evaluate the accuracy of the MNIST model on clean test examples
        eval_params = {'batch_size': batch_size}
        acc = model_eval(sess,
                         x,
                         y,
                         preds,
                         X_test,
                         Y_test,
                         phase=phase,
                         args=eval_params)
        report.clean_train_clean_eval = acc
        assert X_test.shape[0] == test_end - test_start, X_test.shape
        print('Test accuracy on legitimate examples: %0.4f' % acc)

        if adv != 0:
            # Accuracy of the adversarially trained model on adversarial
            # examples
            acc = model_eval(sess,
                             x,
                             y,
                             preds_adv_eval,
                             X_test,
                             Y_test,
                             phase=phase,
                             args=eval_params)
            print('Test accuracy on adversarial examples: %0.4f' % acc)

            acc = model_eval(sess,
                             x,
                             y,
                             preds_adv_eval,
                             X_test,
                             Y_test,
                             phase=phase,
                             args=eval_params,
                             feed={logits_scalar: ATTACK_T})
            print('Test accuracy on adversarial examples (scaled): %0.4f' %
                  acc)

    if train_from_scratch:
        if save:
            train_params.update({'log_dir': model_path})
            if adv and delay > 0:
                train_params.update({'nb_epochs': delay})

        # do clean training for 'nb_epochs' or 'delay' epochs
        if test:
            model_train(sess,
                        x,
                        y,
                        preds,
                        X_train,
                        Y_train,
                        phase=phase,
                        evaluate=evaluate,
                        args=train_params,
                        save=save,
                        rng=rng)
        else:
            model_train(sess,
                        x,
                        y,
                        preds,
                        X_train,
                        Y_train,
                        phase=phase,
                        args=train_params,
                        save=save,
                        rng=rng)

        # optionally do additional adversarial training
        if adv:
            print("Adversarial training for %d epochs" % (nb_epochs - delay))
            train_params.update({'nb_epochs': nb_epochs - delay})
            train_params.update({'reuse_global_step': True})
            if test:
                model_train(sess,
                            x,
                            y,
                            preds,
                            X_train,
                            Y_train,
                            phase=phase,
                            predictions_adv=preds_adv_train,
                            evaluate=evaluate,
                            args=train_params,
                            save=save,
                            rng=rng)
            else:
                model_train(sess,
                            x,
                            y,
                            preds,
                            X_train,
                            Y_train,
                            phase=phase,
                            predictions_adv=preds_adv_train,
                            args=train_params,
                            save=save,
                            rng=rng)
    else:
        tf_model_load(sess, model_path)
        print('Restored model from %s' % model_path)
        evaluate()

    # Evaluate the accuracy of the MNIST model on legitimate test examples
    eval_params = {'batch_size': batch_size}
    accuracy = model_eval(sess,
                          x,
                          y,
                          preds,
                          X_test,
                          Y_test,
                          phase=phase,
                          feed={phase: False},
                          args=eval_params)
    assert X_test.shape[0] == test_end - test_start, X_test.shape
    print('Test accuracy on legitimate test examples: {0}'.format(accuracy))
    report.clean_train_clean_eval = accuracy

    ###########################################################################
    # Build dataset
    ###########################################################################
    if viz_enabled:
        assert nb_samples == nb_classes
        idxs = [
            np.where(np.argmax(Y_test, axis=1) == i)[0][0]
            for i in range(nb_classes)
        ]
        viz_rows = nb_classes if targeted else 2
        # Initialize our array for grid visualization
        grid_shape = (nb_classes, viz_rows, img_rows, img_cols, channels)
        grid_viz_data = np.zeros(grid_shape, dtype='f')

    if targeted:
        from cleverhans.utils import build_targeted_dataset
        if viz_enabled:
            from cleverhans.utils import grid_visual
            adv_inputs, true_labels, adv_ys = build_targeted_dataset(
                X_test, Y_test, idxs, nb_classes, img_rows, img_cols, channels)
        else:
            adv_inputs, true_labels, adv_ys = build_targeted_dataset(
                X_test, Y_test, np.arange(nb_samples), nb_classes, img_rows,
                img_cols, channels)
    else:
        if viz_enabled:
            from cleverhans.utils import pair_visual
            adv_inputs = X_test[idxs]
        else:
            adv_inputs = X_test[:nb_samples]

    ###########################################################################
    # Craft adversarial examples using generic approach
    ###########################################################################
    if targeted:
        att_batch_size = np.clip(nb_samples * (nb_classes - 1),
                                 a_max=MAX_BATCH_SIZE,
                                 a_min=1)
        nb_adv_per_sample = nb_classes - 1
        yname = "y_target"

    else:
        att_batch_size = np.minimum(nb_samples, MAX_BATCH_SIZE)
        nb_adv_per_sample = 1
        adv_ys = None
        yname = "y"

    print('Crafting ' + str(nb_samples) + ' * ' + str(nb_adv_per_sample) +
          ' adversarial examples')
    print("This could take some time ...")

    if attack == ATTACK_CARLINI_WAGNER_L2:
        print('Attack: CarliniWagnerL2')
        from cleverhans.attacks import CarliniWagnerL2
        attacker = CarliniWagnerL2(model, back='tf', sess=sess)
        attack_params = {
            'binary_search_steps': 1,
            'max_iterations': attack_iterations,
            'learning_rate': 0.1,
            'batch_size': att_batch_size,
            'initial_const': 10,
        }
    elif attack == ATTACK_JSMA:
        print('Attack: SaliencyMapMethod')
        from cleverhans.attacks import SaliencyMapMethod
        attacker = SaliencyMapMethod(model, back='tf', sess=sess)
        attack_params = {'theta': 1., 'gamma': 0.1}
    elif attack == ATTACK_FGSM:
        print('Attack: FastGradientMethod')
        from cleverhans.attacks import FastGradientMethod
        attacker = FastGradientMethod(model, back='tf', sess=sess)
        attack_params = {'eps': eps}
    elif attack == ATTACK_MADRYETAL:
        print('Attack: MadryEtAl')
        from cleverhans.attacks import MadryEtAl
        attacker = MadryEtAl(model, back='tf', sess=sess)
        attack_params = {'eps': eps, 'eps_iter': 0.01, 'nb_iter': nb_iter}
    elif attack == ATTACK_BASICITER:
        print('Attack: BasicIterativeMethod')
        from cleverhans.attacks import BasicIterativeMethod
        attacker = BasicIterativeMethod(model, back='tf', sess=sess)
        attack_params = {'eps': eps, 'eps_iter': 0.01, 'nb_iter': nb_iter}
    else:
        print("Attack undefined")
        sys.exit(1)

    attack_params.update({yname: adv_ys, 'clip_min': 0., 'clip_max': 1.})
    adv_np = attacker.generate_np(adv_inputs, phase, **attack_params)
    '''
    name = 'm_fgsm_eps%s_n%s.npy' % (eps, nb_samples)
    fpath = os.path.join(
        '/scratch/gallowaa/mnist/adversarial_examples/cleverhans/', name)
    np.savez(fpath, x=adv_np, y=Y_test[:nb_samples])
    '''
    '''
    adv_x = attacker.generate(x, phase, **attack_params)
    adv_np, = batch_eval(sess, [x], [adv_x], [adv_inputs], feed={
                         phase: False}, args=eval_params)
    '''
    eval_params = {'batch_size': att_batch_size}
    if targeted:
        print("Evaluating targeted results")
        adv_accuracy = model_eval(sess,
                                  x,
                                  y,
                                  preds,
                                  adv_np,
                                  true_labels,
                                  phase=phase,
                                  args=eval_params)

    else:
        print("Evaluating untargeted results")
        if viz_enabled:
            adv_accuracy = model_eval(sess,
                                      x,
                                      y,
                                      preds,
                                      adv_np,
                                      Y_test[idxs],
                                      phase=phase,
                                      args=eval_params)
        else:
            adv_accuracy = model_eval(sess,
                                      x,
                                      y,
                                      preds,
                                      adv_np,
                                      Y_test[:nb_samples],
                                      phase=phase,
                                      args=eval_params)

    if viz_enabled:
        n = nb_classes - 1
        for i in range(nb_classes):
            if targeted:
                for j in range(nb_classes):
                    if i != j:
                        if j != 0 and i != n:
                            grid_viz_data[i, j] = adv_np[j * n + i]
                        if j == 0 and i > 0 or i == n and j > 0:
                            grid_viz_data[i, j] = adv_np[j * n + i - 1]
                    else:
                        grid_viz_data[i, j] = adv_inputs[j * n]
            else:
                grid_viz_data[j, 0] = adv_inputs[j]
                grid_viz_data[j, 1] = adv_np[j]
        print(grid_viz_data.shape)

    print('--------------------------------------')

    # Compute the number of adversarial examples that were successfully found
    print('Test accuracy on adversarial examples {0:.4f}'.format(adv_accuracy))
    report.clean_train_adv_eval = 1. - adv_accuracy

    # Compute the average distortion introduced by the algorithm
    percent_perturbed = np.mean(
        np.sum((adv_np - adv_inputs)**2, axis=(1, 2, 3))**.5)
    print('Avg. L_2 norm of perturbations {0:.4f}'.format(percent_perturbed))

    # Compute number of modified features (L_0 norm)
    nb_changed = np.where(adv_np != adv_inputs)[0].shape[0]
    percent_perturb = np.mean(float(nb_changed) / adv_np.reshape(-1).shape[0])

    # Compute the average distortion introduced by the algorithm
    print('Avg. rate of perturbed features {0:.4f}'.format(percent_perturb))

    # Friendly output for pasting into spreadsheet
    print('{0:.4f}'.format(accuracy))
    print('{0:.4f}'.format(adv_accuracy))
    print('{0:.4f}'.format(percent_perturbed))
    print('{0:.4f}'.format(percent_perturb))

    # Close TF session
    sess.close()

    # Finally, block & display a grid of all the adversarial examples
    if viz_enabled:
        import matplotlib.pyplot as plt
        _ = grid_visual(grid_viz_data)

    return report
コード例 #4
0
def main(argv=None):
    """
    CIFAR10 CleverHans tutorial
    :return:
    """

    # CIFAR10-specific dimensions
    img_rows = 32
    img_cols = 32
    channels = 3
    nb_classes = 10

    # Set TF random seed to improve reproducibility
    tf.set_random_seed(1234)

    if not hasattr(backend, "tf"):
        raise RuntimeError("This tutorial requires keras to be configured"
                           " to use the TensorFlow backend.")

    # Image dimensions ordering should follow the Theano convention
    if keras.backend.image_dim_ordering() != 'tf':
        keras.backend.set_image_dim_ordering('tf')
        print("INFO: '~/.keras/keras.json' sets 'image_dim_ordering' to "
              "'th', temporarily setting to 'tf'")

    # Create TF session and set as Keras backend session
    sess = tf.Session()
    keras.backend.set_session(sess)

    set_log_level(logging.WARNING)

    # Get CIFAR10 test data
    X_train, Y_train, X_test, Y_test = data_cifar10()

    assert Y_train.shape[1] == 10.
    label_smooth = .1
    Y_train = Y_train.clip(label_smooth / 9., 1. - label_smooth)

    # Define input TF placeholder
    x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols, channels))
    y = tf.placeholder(tf.float32, shape=(None, 10))
    phase = tf.placeholder(tf.bool, name="phase")

    model_path = FLAGS.model_path
    targeted = True if FLAGS.targeted else False
    binary = True if FLAGS.binary else False
    scale = True if FLAGS.scale else False
    learning_rate = FLAGS.learning_rate
    nb_filters = FLAGS.nb_filters
    batch_size = FLAGS.batch_size
    nb_samples = FLAGS.nb_samples
    nb_epochs = FLAGS.nb_epochs
    delay = FLAGS.delay
    eps = FLAGS.eps
    adv = FLAGS.adv

    attack = FLAGS.attack
    attack_iterations = FLAGS.attack_iterations

    save = False
    train_from_scratch = False

    if model_path is not None:
        if os.path.exists(model_path):
            # check for existing model in immediate subfolder
            if any(f.endswith('.meta') for f in os.listdir(model_path)):
                binary, scale, nb_filters, batch_size, learning_rate, nb_epochs, adv = parse_model_settings(
                    model_path)
                train_from_scratch = False
            else:
                model_path = build_model_save_path(
                    model_path, binary, batch_size, nb_filters, learning_rate, nb_epochs, adv, delay, scale)
                print(model_path)
                save = True
                train_from_scratch = True
    else:
        train_from_scratch = True  # train from scratch, but don't save since no path given

    if binary:
        if scale:
            from cleverhans_tutorials.tutorial_models import make_scaled_binary_cnn
            model = make_scaled_binary_cnn(phase, 'bin_', input_shape=(
                None, img_rows, img_cols, channels), nb_filters=nb_filters)
        else:
            from cleverhans_tutorials.tutorial_models import make_basic_binary_cnn
            model = make_basic_binary_cnn(phase, 'bin_', input_shape=(
                None, img_rows, img_cols, channels), nb_filters=nb_filters)
    else:
        from cleverhans_tutorials.tutorial_models import make_basic_cnn
        model = make_basic_cnn(phase, 'fp_', input_shape=(
            None, img_rows, img_cols, channels), nb_filters=nb_filters)

    preds = model(x, reuse=False)
    print("Defined TensorFlow model graph.")

    rng = np.random.RandomState([2017, 8, 30])

    def evaluate():
        # Evaluate the accuracy of the CIFAR10 model on legitimate test
        # examples
        eval_params = {'batch_size': batch_size}
        acc = model_eval(
            sess, x, y, preds, X_test, Y_test, phase=phase, args=eval_params)
        assert X_test.shape[0] == 10000, X_test.shape
        print('Test accuracy on legitimate examples: %0.4f' % acc)

    # Train an CIFAR10 model
    train_params = {
        'binary': binary,
        'nb_epochs': nb_epochs,
        'batch_size': batch_size,
        'learning_rate': learning_rate,
        'loss_name': 'train loss',
        'filename': 'model',
        'reuse_global_step': False,
        'train_scope': 'train',
        'is_training': True
    }

    if adv:
        from cleverhans.attacks import FastGradientMethod
        fgsm = FastGradientMethod(model, back='tf', sess=sess)
        fgsm_params = {'eps': eps, 'clip_min': 0., 'clip_max': 1.}
        adv_x_train = fgsm.generate(x, phase, **fgsm_params)
        preds_adv = model.get_probs(adv_x_train)

    if train_from_scratch:
        if save:
            train_params.update({'log_dir': model_path})
            if adv and delay > 0:
                train_params.update({'nb_epochs': delay})

        # do clean training for 'nb_epochs' or 'delay' epochs
        model_train(sess, x, y, preds, X_train, Y_train, phase=phase,
                    evaluate=evaluate, args=train_params, save=save, rng=rng)

        # optionally do additional adversarial training
        if adv:
            print("Adversarial training for %d epochs" % (nb_epochs - delay))
            train_params.update({'nb_epochs': nb_epochs - delay})
            train_params.update({'reuse_global_step': True})
            model_train(sess, x, y, preds, X_train, Y_train, phase=phase,
                        predictions_adv=preds_adv, evaluate=evaluate, args=train_params,
                        save=save, rng=rng)
    else:
        tf_model_load(sess, model_path)
        print('Restored model from %s' % model_path)
        evaluate()

    # Evaluate the accuracy of the CIFAR10 model on legitimate test examples
    eval_params = {'batch_size': batch_size}
    accuracy = model_eval(sess, x, y, preds, X_test, Y_test, phase=phase,
                          feed={phase: False}, args=eval_params)

    print('Test accuracy on legitimate test examples: {0}'.format(accuracy))

    ###########################################################################
    # Build dataset
    ###########################################################################

    if targeted:
        from cleverhans.utils import build_targeted_dataset
        adv_inputs, true_labels, adv_ys = build_targeted_dataset(
            X_test, Y_test, np.arange(nb_samples), nb_classes, img_rows, img_cols, channels)
    else:
        adv_inputs = X_test[:nb_samples]

    ###########################################################################
    # Craft adversarial examples using generic approach
    ###########################################################################
    if targeted:
        att_batch_size = np.clip(
            nb_samples * (nb_classes - 1), a_max=MAX_BATCH_SIZE, a_min=1)
        nb_adv_per_sample = nb_classes - 1
        yname = "y_target"

    else:
        att_batch_size = np.minimum(nb_samples, MAX_BATCH_SIZE)
        nb_adv_per_sample = 1
        adv_ys = None
        yname = "y"

    print('Crafting ' + str(nb_samples) + ' * ' + str(nb_adv_per_sample) +
          ' adversarial examples')
    print("This could take some time ...")

    if attack == ATTACK_CARLINI_WAGNER_L2:
        from cleverhans.attacks import CarliniWagnerL2
        attacker = CarliniWagnerL2(model, back='tf', sess=sess)
        attack_params = {'binary_search_steps': 1,
                         'max_iterations': attack_iterations,
                         'learning_rate': 0.1,
                         'batch_size': att_batch_size,
                         'initial_const': 10,
                         }
    elif attack == ATTACK_JSMA:
        from cleverhans.attacks import SaliencyMapMethod
        attacker = SaliencyMapMethod(model, back='tf', sess=sess)
        attack_params = {'theta': 1., 'gamma': 0.1}
    elif attack == ATTACK_FGSM:
        from cleverhans.attacks import FastGradientMethod
        attacker = FastGradientMethod(model, back='tf', sess=sess)
        attack_params = {'eps': eps}
    elif attack == ATTACK_MADRYETAL:
        from cleverhans.attacks import MadryEtAl
        attacker = MadryEtAl(model, back='tf', sess=sess)
        attack_params = {'eps': eps, 'eps_iter': 0.01, 'nb_iter': nb_iter}
    else:
        print("Attack undefined")
        sys.exit(1)

    attack_params.update({yname: adv_ys, 'clip_min': 0., 'clip_max': 1.})
    X_test_adv = attacker.generate_np(adv_inputs, phase, **attack_params)
    '''
    adv_x = attacker.generate(x, phase, **attack_params)
    # Craft adversarial examples using Fast Gradient Sign Method (FGSM)
    eval_params = {'batch_size': att_batch_size}
    X_test_adv, = batch_eval(sess, [x], [adv_x], [adv_inputs], feed={
                             phase: False}, args=eval_params)
    '''

    if targeted:
        assert X_test_adv.shape[0] == nb_samples * \
            (nb_classes - 1), X_test_adv.shape
        # Evaluate the accuracy of the CIFAR10 model on adversarial examples
        print("Evaluating targeted results")
        adv_accuracy = model_eval(sess, x, y, preds, X_test_adv, true_labels,
                                  phase=phase, args=eval_params)
    else:
        assert X_test_adv.shape[0] == nb_samples, X_test_adv.shape
        # Evaluate the accuracy of the CIFAR10 model on adversarial examples
        print("Evaluating un-targeted results")
        adv_accuracy = model_eval(sess, x, y, preds, X_test_adv, Y_test,
                                  phase=phase, args=eval_params)

    # Compute the number of adversarial examples that were successfully found
    print('Test accuracy on adversarial examples {0:.4f}'.format(adv_accuracy))

    # Compute the average distortion introduced by the algorithm
    percent_perturbed = np.mean(np.sum((X_test_adv - adv_inputs)**2,
                                       axis=(1, 2, 3))**.5)
    print('Avg. L_2 norm of perturbations {0:.4f}'.format(percent_perturbed))

    # Friendly output for pasting into spreadsheet
    print('{0:.4f},'.format(accuracy))
    print('{0:.4f},'.format(adv_accuracy))
    print('{0:.4f},'.format(percent_perturbed))

    sess.close()

    '''
    print("Repeating the process, using adversarial training")

    def evaluate_2():
        # Evaluate the accuracy of the adversarialy trained CIFAR10 model on
        # legitimate test examples
        eval_params = {'batch_size': batch_size}
        accuracy = model_eval(sess, x, y, preds, X_test, Y_test,
                              phase=phase,
                              args=eval_params)
        print('Test accuracy on legitimate test examples: ' + str(accuracy))

        # Evaluate the accuracy of the adversarially trained CIFAR10 model on
        # adversarial examples
        accuracy_adv = model_eval(sess, x, y, preds_adv, X_test,
                                  Y_test, phase=phase, args=eval_params)
        print('Test accuracy on adversarial examples: ' + str(accuracy_adv))

    # Perform adversarial training
    train_params.update({'reuse_global_step': True})
    model_train(sess, x, y, preds, X_train, Y_train, phase=phase,
                predictions_adv=preds_adv, evaluate=evaluate_2,
                args=train_params)
    '''
    '''
コード例 #5
0
def main(argv=None):
    """
    CIFAR10 CleverHans tutorial
    :return:
    """

    # CIFAR10-specific dimensions
    img_rows = 32
    img_cols = 32
    channels = 3
    nb_classes = 10

    # Set TF random seed to improve reproducibility
    tf.set_random_seed(1234)

    if not hasattr(backend, "tf"):
        raise RuntimeError("This tutorial requires keras to be configured"
                           " to use the TensorFlow backend.")

    # Image dimensions ordering should follow the Theano convention
    if keras.backend.image_dim_ordering() != 'tf':
        keras.backend.set_image_dim_ordering('tf')
        print("INFO: '~/.keras/keras.json' sets 'image_dim_ordering' to "
              "'th', temporarily setting to 'tf'")

    # Create TF session and set as Keras backend session
    sess = tf.Session()
    keras.backend.set_session(sess)

    set_log_level(logging.WARNING)

    # Get CIFAR10 test data
    X_train, Y_train, X_test, Y_test = data_cifar10()

    assert Y_train.shape[1] == 10.
    label_smooth = .1
    Y_train = Y_train.clip(label_smooth / 9., 1. - label_smooth)

    # Define input TF placeholder
    x = tf.placeholder(tf.float32, shape=(None, img_rows, img_cols, channels))
    y = tf.placeholder(tf.float32, shape=(None, 10))
    phase = tf.placeholder(tf.bool, name="phase")
    logits_scalar = tf.placeholder_with_default(INIT_T,
                                                shape=(),
                                                name="logits_temperature")

    model_path = FLAGS.model_path
    targeted = True if FLAGS.targeted else False
    learning_rate = FLAGS.learning_rate
    nb_filters = FLAGS.nb_filters
    batch_size = FLAGS.batch_size
    nb_samples = FLAGS.nb_samples
    nb_epochs = FLAGS.nb_epochs
    delay = FLAGS.delay
    eps = FLAGS.eps
    adv = FLAGS.adv

    attack = FLAGS.attack
    attack_iterations = FLAGS.attack_iterations
    nb_iter = FLAGS.nb_iter

    #### EMPIR extra flags
    lowprecision = FLAGS.lowprecision
    abits = FLAGS.abits
    wbits = FLAGS.wbits
    abitsList = FLAGS.abitsList
    wbitsList = FLAGS.wbitsList
    stocRound = True if FLAGS.stocRound else False
    rand = FLAGS.rand
    model_path2 = FLAGS.model_path2
    model_path1 = FLAGS.model_path1
    model_path3 = FLAGS.model_path3
    ensembleThree = True if FLAGS.ensembleThree else False
    abits2 = FLAGS.abits2
    wbits2 = FLAGS.wbits2
    abits2List = FLAGS.abits2List
    wbits2List = FLAGS.wbits2List
    inpgradreg = True if FLAGS.inpgradreg else False
    distill = True if FLAGS.distill else False
    student_epochs = FLAGS.student_epochs
    l2dbl = FLAGS.l2dbl
    l2cs = FLAGS.l2cs
    ####

    save = False
    train_from_scratch = False

    if ensembleThree:
        if (model_path1 is None or model_path2 is None or model_path3 is None):
            train_from_scratch = True
        else:
            train_from_scratch = False
    elif model_path is not None:
        if os.path.exists(model_path):
            # check for existing model in immediate subfolder
            if any(f.endswith('.meta') for f in os.listdir(model_path)):
                train_from_scratch = False
            else:
                model_path = build_model_save_path(model_path, batch_size,
                                                   nb_filters, learning_rate,
                                                   nb_epochs, adv, delay)
                print(model_path)
                save = True
                train_from_scratch = True
    else:
        train_from_scratch = True  # train from scratch, but don't save since no path given

    if ensembleThree:
        if (wbitsList is None) or (
                abitsList is None
        ):  # Layer wise separate quantization not specified for first model
            if (wbits == 0) or (abits == 0):
                print(
                    "Error: the number of bits for constant precision weights and activations across layers for the first model have to specified using wbits1 and abits1 flags"
                )
                sys.exit(1)
            else:
                fixedPrec1 = 1
        elif (len(wbitsList) != 3) or (len(abitsList) != 3):
            print(
                "Error: Need to specify the precisions for activations and weights for the atleast the three convolutional layers of the first model"
            )
            sys.exit(1)
        else:
            fixedPrec1 = 0

        if (wbits2List is None) or (
                abits2List is None
        ):  # Layer wise separate quantization not specified for second model
            if (wbits2 == 0) or (abits2 == 0):
                print(
                    "Error: the number of bits for constant precision weights and activations across layers for the second model have to specified using wbits1 and abits1 flags"
                )
                sys.exit(1)
            else:
                fixedPrec2 = 1
        elif (len(wbits2List) != 3) or (len(abits2List) != 3):
            print(
                "Error: Need to specify the precisions for activations and weights for the atleast the three convolutional layers of the second model"
            )
            sys.exit(1)
        else:
            fixedPrec2 = 0

        if (fixedPrec2 != 1) or (
                fixedPrec1 != 1
        ):  # Atleast one of the models have separate precisions per layer
            fixedPrec = 0
            print("Within atleast one model has separate precisions")
            if (fixedPrec1 == 1):  # first layer has fixed precision
                abitsList = (abits, abits, abits)
                wbitsList = (wbits, wbits, wbits)
            if (fixedPrec2 == 1):  # second layer has fixed precision
                abits2List = (abits2, abits2, abits2)
                wbits2List = (wbits2, wbits2, wbits2)
        else:
            fixedPrec = 1

        if (train_from_scratch):
            print("The ensemble model cannot be trained from scratch")
            sys.exit(1)
        if fixedPrec == 1:
            from cleverhans_tutorials.tutorial_models import make_ensemble_three_cifar_cnn
            model = make_ensemble_three_cifar_cnn(phase,
                                                  logits_scalar,
                                                  'lp1_',
                                                  'lp2_',
                                                  'fp_',
                                                  wbits,
                                                  abits,
                                                  wbits2,
                                                  abits2,
                                                  input_shape=(None, img_rows,
                                                               img_cols,
                                                               channels),
                                                  nb_filters=nb_filters)
        else:
            from cleverhans_tutorials.tutorial_models import make_ensemble_three_cifar_cnn_layerwise
            model = make_ensemble_three_cifar_cnn_layerwise(
                phase,
                logits_scalar,
                'lp1_',
                'lp2_',
                'fp_',
                wbitsList,
                abitsList,
                wbits2List,
                abits2List,
                input_shape=(None, img_rows, img_cols, channels),
                nb_filters=nb_filters)
    elif lowprecision:
        if (wbitsList is None) or (
                abitsList is
                None):  # Layer wise separate quantization not specified
            if (wbits == 0) or (abits == 0):
                print(
                    "Error: the number of bits for constant precision weights and activations across layers have to specified using wbits and abits flags"
                )
                sys.exit(1)
            else:
                fixedPrec = 1
        elif (len(wbitsList) != 3) or (len(abitsList) != 3):
            print(
                "Error: Need to specify the precisions for activations and weights for the atleast the three convolutional layers"
            )
            sys.exit(1)
        else:
            fixedPrec = 0

        if fixedPrec:
            from cleverhans_tutorials.tutorial_models import make_basic_lowprecision_cifar_cnn
            model = make_basic_lowprecision_cifar_cnn(
                phase,
                logits_scalar,
                'lp_',
                wbits,
                abits,
                input_shape=(None, img_rows, img_cols, channels),
                nb_filters=nb_filters,
                stocRound=stocRound)
        else:
            from cleverhans_tutorials.tutorial_models import make_layerwise_lowprecision_cifar_cnn
            model = make_layerwise_lowprecision_cifar_cnn(
                phase,
                logits_scalar,
                'lp_',
                wbitsList,
                abitsList,
                input_shape=(None, img_rows, img_cols, channels),
                nb_filters=nb_filters,
                stocRound=stocRound)
    elif distill:
        from cleverhans_tutorials.tutorial_models import make_distilled_cifar_cnn
        model = make_distilled_cifar_cnn(phase,
                                         logits_scalar,
                                         'teacher_fp_',
                                         'fp_',
                                         nb_filters=nb_filters,
                                         input_shape=(None, img_rows, img_cols,
                                                      channels))
    ####
    else:
        from cleverhans_tutorials.tutorial_models import make_basic_cifar_cnn
        model = make_basic_cifar_cnn(phase,
                                     logits_scalar,
                                     'fp_',
                                     input_shape=(None, img_rows, img_cols,
                                                  channels),
                                     nb_filters=nb_filters)

    # separate predictions of teacher for distilled training
    if distill:
        teacher_preds = model.teacher_call(x, reuse=False)
        teacher_logits = model.get_teacher_logits(x, reuse=False)

    # separate calling function for ensemble models
    if ensembleThree:
        preds = model.ensemble_call(x, reuse=False)
    else:
        ##default
        preds = model(x, reuse=False)
    print("Defined TensorFlow model graph.")

    rng = np.random.RandomState([2017, 8, 30])

    def evaluate():
        # Evaluate the accuracy of the CIFAR10 model on legitimate test
        # examples
        eval_params = {'batch_size': batch_size}
        if ensembleThree:
            acc = model_eval_ensemble(sess,
                                      x,
                                      y,
                                      preds,
                                      X_test,
                                      Y_test,
                                      phase=phase,
                                      args=eval_params)
        else:
            acc = model_eval(sess,
                             x,
                             y,
                             preds,
                             X_test,
                             Y_test,
                             phase=phase,
                             args=eval_params)
        assert X_test.shape[0] == 10000, X_test.shape
        print('Test accuracy on legitimate examples: %0.4f' % acc)

    # Train an CIFAR10 model
    train_params = {
        'nb_epochs': nb_epochs,
        'batch_size': batch_size,
        'learning_rate': learning_rate,
        'loss_name': 'train loss',
        'filename': 'model',
        'reuse_global_step': False,
        'train_scope': 'train',
        'is_training': True
    }

    if adv != 0:
        if adv == ADVERSARIAL_TRAINING_MADRYETAL:
            from cleverhans.attacks import MadryEtAl
            train_attack_params = {
                'eps': MAX_EPS,
                'eps_iter': 0.01,
                'nb_iter': nb_iter
            }
            train_attacker = MadryEtAl(model, sess=sess)

        elif adv == ADVERSARIAL_TRAINING_FGSM:
            from cleverhans.attacks import FastGradientMethod
            stddev = int(np.ceil((MAX_EPS * 255) // 2))
            train_attack_params = {
                'eps':
                tf.abs(
                    tf.truncated_normal(shape=(batch_size, 1, 1, 1),
                                        mean=0,
                                        stddev=stddev))
            }
            train_attacker = FastGradientMethod(model, back='tf', sess=sess)
        # create the adversarial trainer
        train_attack_params.update({'clip_min': 0., 'clip_max': 1.})
        adv_x_train = train_attacker.generate(x, phase, **train_attack_params)
        preds_adv_train = model.get_probs(adv_x_train)

        eval_attack_params = {'eps': MAX_EPS, 'clip_min': 0., 'clip_max': 1.}
        adv_x_eval = train_attacker.generate(x, phase, **eval_attack_params)
        preds_adv_eval = model.get_probs(adv_x_eval)  # * logits_scalar

    if train_from_scratch:
        if save:
            train_params.update({'log_dir': model_path})
            if adv and delay > 0:
                train_params.update({'nb_epochs': delay})

        # do clean training for 'nb_epochs' or 'delay' epochs
        if distill:
            temperature = 10  # 1 means the teacher predictions are used as it is
            teacher_scaled_preds_val = model_train_teacher(sess,
                                                           x,
                                                           y,
                                                           teacher_preds,
                                                           teacher_logits,
                                                           temperature,
                                                           X_train,
                                                           Y_train,
                                                           phase=phase,
                                                           args=train_params,
                                                           rng=rng)
            eval_params = {'batch_size': batch_size}
            teacher_acc = model_eval(sess,
                                     x,
                                     y,
                                     teacher_preds,
                                     X_test,
                                     Y_test,
                                     phase=phase,
                                     args=eval_params)
            print(
                'Test accuracy of the teacher model on legitimate examples: %0.4f'
                % teacher_acc)
            print('Training the student model...')
            student_train_params = {
                'nb_epochs': student_epochs,
                'batch_size': batch_size,
                'learning_rate': learning_rate,
                'loss_name': 'train loss',
                'filename': 'model',
                'reuse_global_step': False,
                'train_scope': 'train',
                'is_training': True
            }
            if save:
                student_train_params.update({'log_dir': model_path})
            y_teacher = tf.placeholder(tf.float32, shape=(None, nb_classes))
            model_train_student(sess,
                                x,
                                y,
                                preds,
                                temperature,
                                X_train,
                                Y_train,
                                y_teacher=y_teacher,
                                teacher_preds=teacher_scaled_preds_val,
                                alpha=0.3,
                                beta=0.7,
                                phase=phase,
                                evaluate=evaluate,
                                args=student_train_params,
                                save=save,
                                rng=rng)
        elif inpgradreg:
            model_train_inpgrad_reg(sess,
                                    x,
                                    y,
                                    preds,
                                    X_train,
                                    Y_train,
                                    phase=phase,
                                    evaluate=evaluate,
                                    l2dbl=l2dbl,
                                    l2cs=l2cs,
                                    args=train_params,
                                    save=save,
                                    rng=rng)
        else:
            # do clean training for 'nb_epochs' or 'delay' epochs
            model_train(sess,
                        x,
                        y,
                        preds,
                        X_train,
                        Y_train,
                        phase=phase,
                        evaluate=evaluate,
                        args=train_params,
                        save=save,
                        rng=rng)

        # optionally do additional adversarial training
        if adv:
            print("Adversarial training for %d epochs" % (nb_epochs - delay))
            train_params.update({'nb_epochs': nb_epochs - delay})
            train_params.update({'reuse_global_step': True})
            model_train(sess,
                        x,
                        y,
                        preds,
                        X_train,
                        Y_train,
                        phase=phase,
                        predictions_adv=preds_adv_train,
                        evaluate=evaluate,
                        args=train_params,
                        save=save,
                        rng=rng)

    else:
        if ensembleThree:
            variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES)
            stored_variables = [
                'lp_conv1_init/k', 'lp_conv2_init/k', 'lp_conv3_init/k',
                'lp_ip1init/W', 'lp_logits_init/W'
            ]
            variable_dict = dict(zip(stored_variables, variables[:5]))
            # Restore the first set of variables from model_path1
            saver = tf.train.Saver(variable_dict)
            saver.restore(sess, tf.train.latest_checkpoint(model_path1))
            # Restore the second set of variables from model_path2
            variable_dict = dict(zip(stored_variables, variables[5:10]))
            saver2 = tf.train.Saver(variable_dict)
            saver2.restore(sess, tf.train.latest_checkpoint(model_path2))
            stored_variables = [
                'fp_conv1_init/k', 'fp_conv2_init/k', 'fp_conv3_init/k',
                'fp_ip1init/W', 'fp_logits_init/W'
            ]
            variable_dict = dict(zip(stored_variables, variables[10:]))
            saver3 = tf.train.Saver(variable_dict)
            saver3.restore(sess, tf.train.latest_checkpoint(model_path3))
        else:
            tf_model_load(sess, model_path)
            print('Restored model from %s' % model_path)
        evaluate()

    # Evaluate the accuracy of the CIFAR10 model on legitimate test examples
    eval_params = {'batch_size': batch_size}
    if ensembleThree:
        accuracy = model_eval_ensemble(sess,
                                       x,
                                       y,
                                       preds,
                                       X_test,
                                       Y_test,
                                       phase=phase,
                                       feed={phase: False},
                                       args=eval_params)
    else:
        accuracy = model_eval(sess,
                              x,
                              y,
                              preds,
                              X_test,
                              Y_test,
                              phase=phase,
                              feed={phase: False},
                              args=eval_params)

    print('Test accuracy on legitimate test examples: {0}'.format(accuracy))

    ###########################################################################
    # Build dataset
    ###########################################################################

    if targeted:
        from cleverhans.utils import build_targeted_dataset
        adv_inputs, true_labels, adv_ys = build_targeted_dataset(
            X_test, Y_test, np.arange(nb_samples), nb_classes, img_rows,
            img_cols, channels)
    else:
        adv_inputs = X_test[:nb_samples]

    ###########################################################################
    # Craft adversarial examples using generic approach
    ###########################################################################
    if targeted:
        att_batch_size = np.clip(nb_samples * (nb_classes - 1),
                                 a_max=MAX_BATCH_SIZE,
                                 a_min=1)
        nb_adv_per_sample = nb_classes - 1
        yname = "y_target"

    else:
        att_batch_size = np.minimum(nb_samples, MAX_BATCH_SIZE)
        nb_adv_per_sample = 1
        adv_ys = None
        yname = "y"

    print('Crafting ' + str(nb_samples) + ' * ' + str(nb_adv_per_sample) +
          ' adversarial examples')
    print("This could take some time ...")

    if ensembleThree:
        model_type = 'ensembleThree'
    else:
        model_type = 'default'

    if attack == ATTACK_CARLINI_WAGNER_L2:
        from cleverhans.attacks import CarliniWagnerL2
        attacker = CarliniWagnerL2(model,
                                   back='tf',
                                   model_type=model_type,
                                   num_classes=nb_classes,
                                   sess=sess)
        attack_params = {
            'binary_search_steps': 1,
            'max_iterations': attack_iterations,
            'learning_rate': 0.1,
            'batch_size': att_batch_size,
            'initial_const': 10,
        }
    elif attack == ATTACK_JSMA:
        from cleverhans.attacks import SaliencyMapMethod
        attacker = SaliencyMapMethod(model,
                                     back='tf',
                                     model_type=model_type,
                                     sess=sess,
                                     num_classes=nb_classes)
        attack_params = {'theta': 1., 'gamma': 0.1}
    elif attack == ATTACK_FGSM:
        from cleverhans.attacks import FastGradientMethod
        attacker = FastGradientMethod(model,
                                      back='tf',
                                      model_type=model_type,
                                      sess=sess,
                                      num_classes=nb_classes)
        attack_params = {'eps': eps}
    elif attack == ATTACK_MADRYETAL:
        from cleverhans.attacks import MadryEtAl
        attacker = MadryEtAl(model,
                             back='tf',
                             model_type=model_type,
                             sess=sess,
                             num_classes=nb_classes)
        attack_params = {'eps': eps, 'eps_iter': 0.01, 'nb_iter': nb_iter}
    elif attack == ATTACK_BASICITER:
        from cleverhans.attacks import BasicIterativeMethod
        attacker = BasicIterativeMethod(model,
                                        back='tf',
                                        sess=sess,
                                        model_type=model_type,
                                        num_classes=nb_classes)
        attack_params = {'eps': eps, 'eps_iter': 0.01, 'nb_iter': nb_iter}
    else:
        print("Attack undefined")
        sys.exit(1)

    attack_params.update({yname: adv_ys, 'clip_min': 0., 'clip_max': 1.})
    X_test_adv = attacker.generate_np(adv_inputs, phase, **attack_params)
    '''
    adv_x = attacker.generate(x, phase, **attack_params)
    # Craft adversarial examples using Fast Gradient Sign Method (FGSM)
    eval_params = {'batch_size': att_batch_size}
    X_test_adv, = batch_eval(sess, [x], [adv_x], [adv_inputs], feed={
                             phase: False}, args=eval_params)
    '''

    if targeted:
        assert X_test_adv.shape[0] == nb_samples * \
            (nb_classes - 1), X_test_adv.shape
        # Evaluate the accuracy of the CIFAR10 model on adversarial examples
        print("Evaluating targeted results")
        adv_accuracy = model_eval(sess,
                                  x,
                                  y,
                                  preds,
                                  X_test_adv,
                                  true_labels,
                                  phase=phase,
                                  args=eval_params)
    else:
        # assert X_test_adv.shape[0] == nb_samples, X_test_adv.shape
        # Evaluate the accuracy of the CIFAR10 model on adversarial examples
        print("Evaluating un-targeted results")
        if ensembleThree:
            adv_accuracy = model_eval_ensemble(sess,
                                               x,
                                               y,
                                               preds,
                                               X_test_adv,
                                               Y_test,
                                               phase=phase,
                                               args=eval_params)
        else:  #default below
            adv_accuracy = model_eval(sess,
                                      x,
                                      y,
                                      preds,
                                      X_test_adv,
                                      Y_test,
                                      phase=phase,
                                      args=eval_params)

    # Compute the number of adversarial examples that were successfully found
    print('Test accuracy on adversarial examples {0:.4f}'.format(adv_accuracy))

    # Compute the average distortion introduced by the algorithm
    percent_perturbed = np.mean(
        np.sum((X_test_adv - adv_inputs)**2, axis=(1, 2, 3))**.5)
    print('Avg. L_2 norm of perturbations {0:.4f}'.format(percent_perturbed))

    # Friendly output for pasting into spreadsheet
    print('{0:.4f},'.format(accuracy))
    print('{0:.4f},'.format(adv_accuracy))
    print('{0:.4f},'.format(percent_perturbed))

    sess.close()
    '''
    print("Repeating the process, using adversarial training")

    def evaluate_2():
        # Evaluate the accuracy of the adversarialy trained CIFAR10 model on
        # legitimate test examples
        eval_params = {'batch_size': batch_size}
        accuracy = model_eval(sess, x, y, preds, X_test, Y_test,
                              phase=phase,
                              args=eval_params)
        print('Test accuracy on legitimate test examples: ' + str(accuracy))

        # Evaluate the accuracy of the adversarially trained CIFAR10 model on
        # adversarial examples
        accuracy_adv = model_eval(sess, x, y, preds_adv, X_test,
                                  Y_test, phase=phase, args=eval_params)
        print('Test accuracy on adversarial examples: ' + str(accuracy_adv))

    # Perform adversarial training
    train_params.update({'reuse_global_step': True})
    model_train(sess, x, y, preds, X_train, Y_train, phase=phase,
                predictions_adv=preds_adv, evaluate=evaluate_2,
                args=train_params)
    '''
    '''